2014-12-19 08:45:50 -08:00
|
|
|
// VirtualWire.cpp
|
|
|
|
//
|
|
|
|
// Virtual Wire implementation for Arduino
|
|
|
|
// See the README file in this directory fdor documentation
|
|
|
|
// See also
|
|
|
|
// ASH Transceiver Software Designer's Guide of 2002.08.07
|
|
|
|
// http://www.rfm.com/products/apnotes/tr_swg05.pdf
|
|
|
|
//
|
|
|
|
// Changes:
|
|
|
|
// 1.5 2008-05-25: fixed a bug that could prevent messages with certain
|
|
|
|
// bytes sequences being received (false message start detected)
|
|
|
|
// 1.6 2011-09-10: Patch from David Bath to prevent unconditional reenabling of the receiver
|
|
|
|
// at end of transmission.
|
|
|
|
//
|
|
|
|
// Author: Mike McCauley (mikem@airspayce.com)
|
|
|
|
// Copyright (C) 2008 Mike McCauley
|
|
|
|
// $Id: VirtualWire.cpp,v 1.9 2013/02/14 22:02:11 mikem Exp mikem $
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(ARDUINO)
|
|
|
|
#if (ARDUINO < 100)
|
|
|
|
#include "WProgram.h"
|
|
|
|
#endif
|
|
|
|
#elif defined(__MSP430G2452__) || defined(__MSP430G2553__) // LaunchPad specific
|
|
|
|
#include "legacymsp430.h"
|
|
|
|
#include "Energia.h"
|
|
|
|
#else // error
|
|
|
|
#error Platform not defined
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "VirtualWire.h"
|
|
|
|
#include <util/crc16.h>
|
|
|
|
|
|
|
|
|
|
|
|
static uint8_t vw_tx_buf[(VW_MAX_MESSAGE_LEN * 2) + VW_HEADER_LEN]
|
|
|
|
= {0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x2a, 0x38, 0x2c};
|
|
|
|
|
|
|
|
// Number of symbols in vw_tx_buf to be sent;
|
|
|
|
static uint8_t vw_tx_len = 0;
|
|
|
|
|
|
|
|
// Index of the next symbol to send. Ranges from 0 to vw_tx_len
|
|
|
|
static uint8_t vw_tx_index = 0;
|
|
|
|
|
|
|
|
// Bit number of next bit to send
|
|
|
|
static uint8_t vw_tx_bit = 0;
|
|
|
|
|
|
|
|
// Sample number for the transmitter. Runs 0 to 7 during one bit interval
|
|
|
|
static uint8_t vw_tx_sample = 0;
|
|
|
|
|
|
|
|
// Flag to indicated the transmitter is active
|
|
|
|
static volatile uint8_t vw_tx_enabled = 0;
|
|
|
|
|
|
|
|
// Total number of messages sent
|
|
|
|
static uint16_t vw_tx_msg_count = 0;
|
|
|
|
|
|
|
|
// The digital IO pin number of the press to talk, enables the transmitter hardware
|
|
|
|
static uint8_t vw_ptt_pin = 10;
|
|
|
|
static uint8_t vw_ptt_inverted = 0;
|
|
|
|
|
|
|
|
// The digital IO pin number of the receiver data
|
|
|
|
static uint8_t vw_rx_pin = 11;
|
|
|
|
|
|
|
|
// The digital IO pin number of the transmitter data
|
|
|
|
static uint8_t vw_tx_pin = 12;
|
|
|
|
|
|
|
|
// Current receiver sample
|
|
|
|
static uint8_t vw_rx_sample = 0;
|
|
|
|
|
|
|
|
// Last receiver sample
|
|
|
|
static uint8_t vw_rx_last_sample = 0;
|
|
|
|
|
|
|
|
// PLL ramp, varies between 0 and VW_RX_RAMP_LEN-1 (159) over
|
|
|
|
// VW_RX_SAMPLES_PER_BIT (8) samples per nominal bit time.
|
|
|
|
// When the PLL is synchronised, bit transitions happen at about the
|
|
|
|
// 0 mark.
|
|
|
|
static uint8_t vw_rx_pll_ramp = 0;
|
|
|
|
|
|
|
|
// This is the integrate and dump integral. If there are <5 0 samples in the PLL cycle
|
|
|
|
// the bit is declared a 0, else a 1
|
|
|
|
static uint8_t vw_rx_integrator = 0;
|
|
|
|
|
|
|
|
// Flag indictate if we have seen the start symbol of a new message and are
|
|
|
|
// in the processes of reading and decoding it
|
|
|
|
static uint8_t vw_rx_active = 0;
|
|
|
|
|
|
|
|
// Flag to indicate that a new message is available
|
|
|
|
static volatile uint8_t vw_rx_done = 0;
|
|
|
|
|
|
|
|
// Flag to indicate the receiver PLL is to run
|
|
|
|
static uint8_t vw_rx_enabled = 0;
|
|
|
|
|
|
|
|
// Last 12 bits received, so we can look for the start symbol
|
|
|
|
static uint16_t vw_rx_bits = 0;
|
|
|
|
|
|
|
|
// How many bits of message we have received. Ranges from 0 to 12
|
|
|
|
static uint8_t vw_rx_bit_count = 0;
|
|
|
|
|
|
|
|
// The incoming message buffer
|
|
|
|
static uint8_t vw_rx_buf[VW_MAX_MESSAGE_LEN];
|
|
|
|
|
|
|
|
// The incoming message expected length
|
|
|
|
static uint8_t vw_rx_count = 0;
|
|
|
|
|
|
|
|
// The incoming message buffer length received so far
|
|
|
|
static volatile uint8_t vw_rx_len = 0;
|
|
|
|
|
|
|
|
// Number of bad messages received and dropped due to bad lengths
|
|
|
|
static uint8_t vw_rx_bad = 0;
|
|
|
|
|
|
|
|
// Number of good messages received
|
|
|
|
static uint8_t vw_rx_good = 0;
|
|
|
|
|
|
|
|
// 4 bit to 6 bit symbol converter table
|
|
|
|
// Used to convert the high and low nybbles of the transmitted data
|
|
|
|
// into 6 bit symbols for transmission. Each 6-bit symbol has 3 1s and 3 0s
|
|
|
|
// with at most 3 consecutive identical bits
|
|
|
|
static uint8_t symbols[] =
|
|
|
|
{
|
|
|
|
0xd, 0xe, 0x13, 0x15, 0x16, 0x19, 0x1a, 0x1c,
|
|
|
|
0x23, 0x25, 0x26, 0x29, 0x2a, 0x2c, 0x32, 0x34
|
|
|
|
};
|
|
|
|
|
|
|
|
// This new feature allows to call an external function from the timer interrupt (interesting for small microcontroller without many timers)
|
|
|
|
static void (*_Funct)(void)=NULL;
|
|
|
|
|
|
|
|
// Cant really do this as a real C++ class, since we need to have
|
|
|
|
// an ISR
|
|
|
|
extern "C"
|
|
|
|
{
|
|
|
|
|
|
|
|
// Compute CRC over count bytes.
|
|
|
|
// This should only be ever called at user level, not interrupt level
|
|
|
|
uint16_t vw_crc(uint8_t *ptr, uint8_t count)
|
|
|
|
{
|
|
|
|
uint16_t crc = 0xffff;
|
|
|
|
|
|
|
|
while (count-- > 0)
|
|
|
|
crc = _crc_ccitt_update(crc, *ptr++);
|
|
|
|
return crc;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convert a 6 bit encoded symbol into its 4 bit decoded equivalent
|
|
|
|
uint8_t vw_symbol_6to4(uint8_t symbol)
|
|
|
|
{
|
|
|
|
uint8_t i;
|
|
|
|
|
|
|
|
// Linear search :-( Could have a 64 byte reverse lookup table?
|
|
|
|
for (i = 0; i < 16; i++)
|
|
|
|
if (symbol == symbols[i]) return i;
|
|
|
|
return 0; // Not found
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the output pin number for transmitter data
|
|
|
|
void vw_set_tx_pin(uint8_t pin)
|
|
|
|
{
|
|
|
|
vw_tx_pin = pin;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the pin number for input receiver data
|
|
|
|
void vw_set_rx_pin(uint8_t pin)
|
|
|
|
{
|
|
|
|
vw_rx_pin = pin;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the output pin number for transmitter PTT enable
|
|
|
|
void vw_set_ptt_pin(uint8_t pin)
|
|
|
|
{
|
|
|
|
vw_ptt_pin = pin;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set the ptt pin inverted (low to transmit)
|
|
|
|
void vw_set_ptt_inverted(uint8_t inverted)
|
|
|
|
{
|
|
|
|
vw_ptt_inverted = inverted;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Called 8 times per bit period
|
|
|
|
// Phase locked loop tries to synchronise with the transmitter so that bit
|
|
|
|
// transitions occur at about the time vw_rx_pll_ramp is 0;
|
|
|
|
// Then the average is computed over each bit period to deduce the bit value
|
|
|
|
void vw_pll()
|
|
|
|
{
|
|
|
|
// Integrate each sample
|
|
|
|
if (vw_rx_sample)
|
|
|
|
vw_rx_integrator++;
|
|
|
|
|
|
|
|
if (vw_rx_sample != vw_rx_last_sample)
|
|
|
|
{
|
|
|
|
// Transition, advance if ramp > 80, retard if < 80
|
|
|
|
vw_rx_pll_ramp += ((vw_rx_pll_ramp < VW_RAMP_TRANSITION)
|
|
|
|
? VW_RAMP_INC_RETARD
|
|
|
|
: VW_RAMP_INC_ADVANCE);
|
|
|
|
vw_rx_last_sample = vw_rx_sample;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// No transition
|
|
|
|
// Advance ramp by standard 20 (== 160/8 samples)
|
|
|
|
vw_rx_pll_ramp += VW_RAMP_INC;
|
|
|
|
}
|
|
|
|
if (vw_rx_pll_ramp >= VW_RX_RAMP_LEN)
|
|
|
|
{
|
|
|
|
// Add this to the 12th bit of vw_rx_bits, LSB first
|
|
|
|
// The last 12 bits are kept
|
|
|
|
vw_rx_bits >>= 1;
|
|
|
|
|
|
|
|
// Check the integrator to see how many samples in this cycle were high.
|
|
|
|
// If < 5 out of 8, then its declared a 0 bit, else a 1;
|
|
|
|
if (vw_rx_integrator >= 5)
|
|
|
|
vw_rx_bits |= 0x800;
|
|
|
|
|
|
|
|
vw_rx_pll_ramp -= VW_RX_RAMP_LEN;
|
|
|
|
vw_rx_integrator = 0; // Clear the integral for the next cycle
|
|
|
|
|
|
|
|
if (vw_rx_active)
|
|
|
|
{
|
|
|
|
// We have the start symbol and now we are collecting message bits,
|
|
|
|
// 6 per symbol, each which has to be decoded to 4 bits
|
|
|
|
if (++vw_rx_bit_count >= 12)
|
|
|
|
{
|
|
|
|
// Have 12 bits of encoded message == 1 byte encoded
|
|
|
|
// Decode as 2 lots of 6 bits into 2 lots of 4 bits
|
|
|
|
// The 6 lsbits are the high nybble
|
|
|
|
uint8_t this_byte =
|
|
|
|
(vw_symbol_6to4(vw_rx_bits & 0x3f)) << 4
|
|
|
|
| vw_symbol_6to4(vw_rx_bits >> 6);
|
|
|
|
|
|
|
|
// The first decoded byte is the byte count of the following message
|
|
|
|
// the count includes the byte count and the 2 trailing FCS bytes
|
|
|
|
// REVISIT: may also include the ACK flag at 0x40
|
|
|
|
if (vw_rx_len == 0)
|
|
|
|
{
|
|
|
|
// The first byte is the byte count
|
|
|
|
// Check it for sensibility. It cant be less than 4, since it
|
|
|
|
// includes the bytes count itself and the 2 byte FCS
|
|
|
|
vw_rx_count = this_byte;
|
|
|
|
if (vw_rx_count < 4 || vw_rx_count > VW_MAX_MESSAGE_LEN)
|
|
|
|
{
|
|
|
|
// Stupid message length, drop the whole thing
|
|
|
|
vw_rx_active = false;
|
|
|
|
vw_rx_bad++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
vw_rx_buf[vw_rx_len++] = this_byte;
|
|
|
|
|
|
|
|
if (vw_rx_len >= vw_rx_count)
|
|
|
|
{
|
|
|
|
// Got all the bytes now
|
|
|
|
vw_rx_active = false;
|
|
|
|
vw_rx_good++;
|
|
|
|
vw_rx_done = true; // Better come get it before the next one starts
|
|
|
|
}
|
|
|
|
vw_rx_bit_count = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Not in a message, see if we have a start symbol
|
|
|
|
else if (vw_rx_bits == 0xb38)
|
|
|
|
{
|
|
|
|
// Have start symbol, start collecting message
|
|
|
|
vw_rx_active = true;
|
|
|
|
vw_rx_bit_count = 0;
|
|
|
|
vw_rx_len = 0;
|
|
|
|
vw_rx_done = false; // Too bad if you missed the last message
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Common function for setting timer ticks @ prescaler values for speed
|
|
|
|
// Returns prescaler index into {0, 0, 3, 6, 8, 10, 12} array
|
|
|
|
// and sets nticks to compare-match value if lower than max_ticks
|
|
|
|
// returns 0 & nticks = 0 on fault
|
2015-08-11 11:41:40 +03:00
|
|
|
const uint8_t prescalers[] PROGMEM = {0, 0, 3, 6, 8, 10, 12}; /* Must be outside the function */
|
2014-12-19 08:45:50 -08:00
|
|
|
uint8_t _timer_calc(uint16_t speed, uint16_t max_ticks, uint16_t *nticks)
|
|
|
|
{
|
|
|
|
// Clock divider (prescaler) values - 0/4096: error flag
|
|
|
|
/* Trick: use power of 2 rather than divisor values: only uint8_t table needed */
|
|
|
|
uint8_t prescaler=0; // index into array & return bit value
|
|
|
|
uint32_t ulticks; // calculate by ntick overflow
|
|
|
|
|
|
|
|
// Div-by-zero protection
|
|
|
|
if (speed == 0)
|
|
|
|
{
|
|
|
|
// signal fault
|
|
|
|
*nticks = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
// test increasing prescaler (divisor), decreasing ulticks until no overflow
|
|
|
|
for (prescaler=1; prescaler < 7; prescaler += 1)
|
|
|
|
{
|
|
|
|
/* Trick: compute in frequency domain rather than in time domain: no need of floats */
|
|
|
|
// Amount of time per CPU clock tick (in seconds)
|
|
|
|
uint32_t clock_freq = F_CPU >> (uint8_t)pgm_read_byte(&prescalers[prescaler]);
|
|
|
|
// Fraction of second needed to xmit one bit
|
|
|
|
uint32_t bit_freq = (uint32_t)speed << 3;/* 8 samples */
|
|
|
|
// number of prescaled ticks needed to handle bit time @ speed
|
|
|
|
ulticks = clock_freq / bit_freq;
|
|
|
|
// Test if ulticks fits in nticks bitwidth (with 1-tick safety margin)
|
|
|
|
if ((ulticks > 1) && (ulticks < max_ticks))
|
|
|
|
{
|
|
|
|
break; // found prescaler
|
|
|
|
}
|
|
|
|
// Won't fit, check with next prescaler value
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for error
|
|
|
|
if ((prescaler >= 6) || (ulticks < 2UL) || (ulticks > (uint32_t)max_ticks))
|
|
|
|
{
|
|
|
|
// signal fault
|
|
|
|
*nticks = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
*nticks = (uint16_t)ulticks;
|
|
|
|
return prescaler;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Speed is in bits per sec RF rate
|
|
|
|
#if defined(__MSP430G2452__) || defined(__MSP430G2553__) // LaunchPad specific
|
|
|
|
void vw_setup(uint16_t speed)
|
|
|
|
{
|
|
|
|
// Calculate the counter overflow count based on the required bit speed
|
|
|
|
// and CPU clock rate
|
|
|
|
uint16_t ocr1a = (F_CPU / 8UL) / speed;
|
|
|
|
|
|
|
|
// This code is for Energia/MSP430
|
|
|
|
TA0CCR0 = ocr1a; // Ticks for 62,5 us
|
|
|
|
TA0CTL = TASSEL_2 + MC_1; // SMCLK, up mode
|
|
|
|
TA0CCTL0 |= CCIE; // CCR0 interrupt enabled
|
|
|
|
|
|
|
|
// Set up digital IO pins
|
|
|
|
pinMode(vw_tx_pin, OUTPUT);
|
|
|
|
pinMode(vw_rx_pin, INPUT);
|
|
|
|
pinMode(vw_ptt_pin, OUTPUT);
|
|
|
|
digitalWrite(vw_ptt_pin, vw_ptt_inverted);
|
|
|
|
}
|
|
|
|
|
|
|
|
#elif defined (ARDUINO) // Arduino specific
|
|
|
|
void vw_setup(uint16_t speed)
|
|
|
|
{
|
|
|
|
uint16_t nticks; // number of prescaled ticks needed
|
|
|
|
uint8_t prescaler; // Bit values for CS0[2:0]
|
|
|
|
|
|
|
|
#ifdef __AVR_ATtiny85__
|
|
|
|
// figure out prescaler value and counter match value
|
|
|
|
prescaler = _timer_calc(speed, (uint8_t)-1, &nticks);
|
|
|
|
if (!prescaler)
|
|
|
|
{
|
|
|
|
return; // fault
|
|
|
|
}
|
|
|
|
|
|
|
|
TCCR0A = 0;
|
|
|
|
TCCR0A = _BV(WGM01); // Turn on CTC mode / Output Compare pins disconnected
|
|
|
|
|
|
|
|
// convert prescaler index to TCCRnB prescaler bits CS00, CS01, CS02
|
|
|
|
TCCR0B = 0;
|
|
|
|
TCCR0B = prescaler; // set CS00, CS01, CS02 (other bits not needed)
|
|
|
|
|
|
|
|
// Number of ticks to count before firing interrupt
|
|
|
|
OCR0A = uint8_t(nticks);
|
|
|
|
|
|
|
|
// Set mask to fire interrupt when OCF0A bit is set in TIFR0
|
|
|
|
TIMSK |= _BV(OCIE0A);
|
|
|
|
#else // ARDUINO
|
|
|
|
// This is the path for most Arduinos
|
|
|
|
// figure out prescaler value and counter match value
|
|
|
|
prescaler = _timer_calc(speed, (uint16_t)-1, &nticks);
|
|
|
|
if (!prescaler)
|
|
|
|
{
|
|
|
|
return; // fault
|
|
|
|
}
|
|
|
|
|
|
|
|
TCCR1A = 0; // Output Compare pins disconnected
|
|
|
|
TCCR1B = _BV(WGM12); // Turn on CTC mode
|
|
|
|
|
|
|
|
// convert prescaler index to TCCRnB prescaler bits CS10, CS11, CS12
|
|
|
|
TCCR1B |= prescaler;
|
|
|
|
|
|
|
|
// Caution: special procedures for setting 16 bit regs
|
|
|
|
// is handled by the compiler
|
|
|
|
OCR1A = nticks;
|
|
|
|
// Enable interrupt
|
|
|
|
#ifdef TIMSK1
|
|
|
|
// atmega168
|
|
|
|
TIMSK1 |= _BV(OCIE1A);
|
|
|
|
#else
|
|
|
|
// others
|
|
|
|
TIMSK |= _BV(OCIE1A);
|
|
|
|
#endif // TIMSK1
|
|
|
|
|
|
|
|
#endif // __AVR_ATtiny85__
|
|
|
|
|
|
|
|
// Set up digital IO pins
|
|
|
|
pinMode(vw_tx_pin, OUTPUT);
|
|
|
|
pinMode(vw_rx_pin, INPUT);
|
|
|
|
pinMode(vw_ptt_pin, OUTPUT);
|
|
|
|
digitalWrite(vw_ptt_pin, vw_ptt_inverted);
|
|
|
|
}
|
|
|
|
#endif // ARDUINO
|
|
|
|
|
|
|
|
// Declare an external function to call in the timer interruption
|
|
|
|
void vw_declare_timer_Ovf_funct(void (*Funct)(void))
|
|
|
|
{
|
|
|
|
uint8_t oldSREG = SREG;
|
|
|
|
cli();
|
|
|
|
_Funct=Funct;
|
|
|
|
SREG = oldSREG;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Start the transmitter, call when the tx buffer is ready to go and vw_tx_len is
|
|
|
|
// set to the total number of symbols to send
|
|
|
|
void vw_tx_start()
|
|
|
|
{
|
|
|
|
vw_tx_index = 0;
|
|
|
|
vw_tx_bit = 0;
|
|
|
|
vw_tx_sample = 0;
|
|
|
|
|
|
|
|
// Enable the transmitter hardware
|
|
|
|
digitalWrite(vw_ptt_pin, true ^ vw_ptt_inverted);
|
|
|
|
|
|
|
|
// Next tick interrupt will send the first bit
|
|
|
|
vw_tx_enabled = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Stop the transmitter, call when all bits are sent
|
|
|
|
void vw_tx_stop()
|
|
|
|
{
|
|
|
|
// Disable the transmitter hardware
|
|
|
|
digitalWrite(vw_ptt_pin, false ^ vw_ptt_inverted);
|
|
|
|
digitalWrite(vw_tx_pin, false);
|
|
|
|
|
|
|
|
// No more ticks for the transmitter
|
|
|
|
vw_tx_enabled = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Enable the receiver. When a message becomes available, vw_rx_done flag
|
|
|
|
// is set, and vw_wait_rx() will return.
|
|
|
|
void vw_rx_start()
|
|
|
|
{
|
|
|
|
if (!vw_rx_enabled)
|
|
|
|
{
|
|
|
|
vw_rx_enabled = true;
|
|
|
|
vw_rx_active = false; // Never restart a partial message
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Disable the receiver
|
|
|
|
void vw_rx_stop()
|
|
|
|
{
|
|
|
|
vw_rx_enabled = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return true if the transmitter is active
|
|
|
|
uint8_t vx_tx_active()
|
|
|
|
{
|
|
|
|
return vw_tx_enabled;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait for the transmitter to become available
|
|
|
|
// Busy-wait loop until the ISR says the message has been sent
|
|
|
|
void vw_wait_tx()
|
|
|
|
{
|
|
|
|
while (vw_tx_enabled)
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait for the receiver to get a message
|
|
|
|
// Busy-wait loop until the ISR says a message is available
|
|
|
|
// can then call vw_get_message()
|
|
|
|
void vw_wait_rx()
|
|
|
|
{
|
|
|
|
while (!vw_rx_done)
|
|
|
|
;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait at most max milliseconds for the receiver to receive a message
|
|
|
|
// Return the truth of whether there is a message
|
|
|
|
uint8_t vw_wait_rx_max(unsigned long milliseconds)
|
|
|
|
{
|
|
|
|
unsigned long start = millis();
|
|
|
|
|
|
|
|
while (!vw_rx_done && ((millis() - start) < milliseconds))
|
|
|
|
;
|
|
|
|
return vw_rx_done;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Wait until transmitter is available and encode and queue the message
|
|
|
|
// into vw_tx_buf
|
|
|
|
// The message is raw bytes, with no packet structure imposed
|
|
|
|
// It is transmitted preceded a byte count and followed by 2 FCS bytes
|
|
|
|
uint8_t vw_send(uint8_t* buf, uint8_t len)
|
|
|
|
{
|
|
|
|
uint8_t i;
|
|
|
|
uint8_t index = 0;
|
|
|
|
uint16_t crc = 0xffff;
|
|
|
|
uint8_t *p = vw_tx_buf + VW_HEADER_LEN; // start of the message area
|
|
|
|
uint8_t count = len + 3; // Added byte count and FCS to get total number of bytes
|
|
|
|
|
|
|
|
if (len > VW_MAX_PAYLOAD)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Wait for transmitter to become available
|
|
|
|
vw_wait_tx();
|
|
|
|
|
|
|
|
// Encode the message length
|
|
|
|
crc = _crc_ccitt_update(crc, count);
|
|
|
|
p[index++] = symbols[count >> 4];
|
|
|
|
p[index++] = symbols[count & 0xf];
|
|
|
|
|
|
|
|
// Encode the message into 6 bit symbols. Each byte is converted into
|
|
|
|
// 2 6-bit symbols, high nybble first, low nybble second
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
{
|
|
|
|
crc = _crc_ccitt_update(crc, buf[i]);
|
|
|
|
p[index++] = symbols[buf[i] >> 4];
|
|
|
|
p[index++] = symbols[buf[i] & 0xf];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Append the fcs, 16 bits before encoding (4 6-bit symbols after encoding)
|
|
|
|
// Caution: VW expects the _ones_complement_ of the CCITT CRC-16 as the FCS
|
|
|
|
// VW sends FCS as low byte then hi byte
|
|
|
|
crc = ~crc;
|
|
|
|
p[index++] = symbols[(crc >> 4) & 0xf];
|
|
|
|
p[index++] = symbols[crc & 0xf];
|
|
|
|
p[index++] = symbols[(crc >> 12) & 0xf];
|
|
|
|
p[index++] = symbols[(crc >> 8) & 0xf];
|
|
|
|
|
|
|
|
// Total number of 6-bit symbols to send
|
|
|
|
vw_tx_len = index + VW_HEADER_LEN;
|
|
|
|
|
|
|
|
// Start the low level interrupt handler sending symbols
|
|
|
|
vw_tx_start();
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return true if there is a message available
|
|
|
|
uint8_t vw_have_message()
|
|
|
|
{
|
|
|
|
return vw_rx_done;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get the last message received (without byte count or FCS)
|
|
|
|
// Copy at most *len bytes, set *len to the actual number copied
|
|
|
|
// Return true if there is a message and the FCS is OK
|
|
|
|
uint8_t vw_get_message(uint8_t* buf, uint8_t* len)
|
|
|
|
{
|
|
|
|
uint8_t rxlen;
|
|
|
|
|
|
|
|
// Message available?
|
|
|
|
if (!vw_rx_done)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Wait until vw_rx_done is set before reading vw_rx_len
|
|
|
|
// then remove bytecount and FCS
|
|
|
|
rxlen = vw_rx_len - 3;
|
|
|
|
|
|
|
|
// Copy message (good or bad)
|
|
|
|
if (*len > rxlen)
|
|
|
|
*len = rxlen;
|
|
|
|
memcpy(buf, vw_rx_buf + 1, *len);
|
|
|
|
|
|
|
|
vw_rx_done = false; // OK, got that message thanks
|
|
|
|
|
|
|
|
// Check the FCS, return goodness
|
|
|
|
return (vw_crc(vw_rx_buf, vw_rx_len) == 0xf0b8); // FCS OK?
|
|
|
|
}
|
|
|
|
|
|
|
|
// This is the interrupt service routine called when timer1 overflows
|
|
|
|
// Its job is to output the next bit from the transmitter (every 8 calls)
|
|
|
|
// and to call the PLL code if the receiver is enabled
|
|
|
|
//ISR(SIG_OUTPUT_COMPARE1A)
|
|
|
|
#if defined (ARDUINO) // Arduino specific
|
|
|
|
|
|
|
|
#ifdef __AVR_ATtiny85__
|
|
|
|
ISR(TIM0_COMPA_vect, ISR_NOBLOCK)
|
|
|
|
#else // Assume Arduino Uno (328p or similar)
|
|
|
|
|
|
|
|
SIGNAL(TIMER1_COMPA_vect)
|
|
|
|
#endif // __AVR_ATtiny85__
|
|
|
|
|
|
|
|
{
|
|
|
|
if (vw_rx_enabled && !vw_tx_enabled)
|
|
|
|
vw_rx_sample = digitalRead(vw_rx_pin);
|
|
|
|
|
|
|
|
// Do transmitter stuff first to reduce transmitter bit jitter due
|
|
|
|
// to variable receiver processing
|
|
|
|
if (vw_tx_enabled && vw_tx_sample++ == 0)
|
|
|
|
{
|
|
|
|
// Send next bit
|
|
|
|
// Symbols are sent LSB first
|
|
|
|
// Finished sending the whole message? (after waiting one bit period
|
|
|
|
// since the last bit)
|
|
|
|
if (vw_tx_index >= vw_tx_len)
|
|
|
|
{
|
|
|
|
vw_tx_stop();
|
|
|
|
vw_tx_msg_count++;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
digitalWrite(vw_tx_pin, vw_tx_buf[vw_tx_index] & (1 << vw_tx_bit++));
|
|
|
|
if (vw_tx_bit >= 6)
|
|
|
|
{
|
|
|
|
vw_tx_bit = 0;
|
|
|
|
vw_tx_index++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (vw_tx_sample > 7)
|
|
|
|
vw_tx_sample = 0;
|
|
|
|
|
|
|
|
if (vw_rx_enabled && !vw_tx_enabled)
|
|
|
|
vw_pll();
|
|
|
|
//PL{
|
|
|
|
if(_Funct) _Funct();
|
|
|
|
//PL}
|
|
|
|
}
|
|
|
|
#elif defined(__MSP430G2452__) || defined(__MSP430G2553__) // LaunchPad specific
|
|
|
|
void vw_Int_Handler()
|
|
|
|
{
|
|
|
|
if (vw_rx_enabled && !vw_tx_enabled)
|
|
|
|
vw_rx_sample = digitalRead(vw_rx_pin);
|
|
|
|
|
|
|
|
// Do transmitter stuff first to reduce transmitter bit jitter due
|
|
|
|
// to variable receiver processing
|
|
|
|
if (vw_tx_enabled && vw_tx_sample++ == 0)
|
|
|
|
{
|
|
|
|
// Send next bit
|
|
|
|
// Symbols are sent LSB first
|
|
|
|
// Finished sending the whole message? (after waiting one bit period
|
|
|
|
// since the last bit)
|
|
|
|
if (vw_tx_index >= vw_tx_len)
|
|
|
|
{
|
|
|
|
vw_tx_stop();
|
|
|
|
vw_tx_msg_count++;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
digitalWrite(vw_tx_pin, vw_tx_buf[vw_tx_index] & (1 << vw_tx_bit++));
|
|
|
|
if (vw_tx_bit >= 6)
|
|
|
|
{
|
|
|
|
vw_tx_bit = 0;
|
|
|
|
vw_tx_index++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (vw_tx_sample > 7)
|
|
|
|
vw_tx_sample = 0;
|
|
|
|
|
|
|
|
if (vw_rx_enabled && !vw_tx_enabled)
|
|
|
|
vw_pll();
|
|
|
|
}
|
|
|
|
|
|
|
|
interrupt(TIMER0_A0_VECTOR) Timer_A_int(void)
|
|
|
|
{
|
|
|
|
vw_Int_Handler();
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
}
|