mirror of
https://github.com/digistump/DigistumpArduino.git
synced 2025-09-17 17:32:25 -07:00
added updated tinypinchange and associated libraries to support PRO
This commit is contained in:
@@ -0,0 +1,193 @@
|
||||
/*
|
||||
Sketch using <RcSeq> library, for automatically dropping a pneumatic Zodiac at sea and returning for it back to the deck of a supply vessel.
|
||||
The sequence is launched after sending the 'g' (Go) character at the USB interface.
|
||||
|
||||
In this example, the declared sequence is:
|
||||
1) The crane lifts the pneumatic Zodiac from the deck to the air and stops
|
||||
2) The crane rotates (90°) to locate the pneumatic Zodiac above the sea
|
||||
3) The crane drops down the pneumatic Zodiac at sea level
|
||||
4) The crane stops during 6 seconds
|
||||
5) The crane lifts up the pneumatic Zodiac from sea level to the air and stops
|
||||
6) The crane rotates (90°) to locate the pneumatic Zodiac above the deck
|
||||
7) The crane drops down the pneumatic Zodiac on the deck and stops. The sequence ends.
|
||||
This sequence uses:
|
||||
- 2 commands from USB interface ('g' and 't' characters from Digiterm or Digi Monitor)
|
||||
- 2 servos (a "ROTATION" servo for the crane rotation and an "UP/DOWN" servo to drop and lift the pneumatic Zodiac)
|
||||
|
||||
IMPORTANT:
|
||||
=========
|
||||
For this sketch, which is using <DigiUSB> library:
|
||||
1) Comment "#define RC_SEQ_WITH_SOFT_RC_PULSE_IN_SUPPORT" in "arduino-1.xx\libraries\RcSeq.h".
|
||||
This will disable the code to manage incoming RC pulses and save some flash memory.
|
||||
RC_SEQ_WITH_SHORT_ACTION_SUPPORT and RC_SEQ_WITH_SOFT_RC_PULSE_OUT_SUPPORT shall be defined
|
||||
2) Replace #define RING_BUFFER_SIZE 128 with #define RING_BUFFER_SIZE 32 in "arduino-1.xx\libraries\DigisparkUSB\DigiUSB.h".
|
||||
3) The sequence will be launch by sending "g" character through USB link (using Digiterm or Digi Monitor).
|
||||
To check all the sequence is performed asynchronously, you can send 't' to toggle the LED during servo motion!
|
||||
If step 1) and 2) are not done, this sketch won't compile because won't fit in programm memory of the DigiSpark!
|
||||
|
||||
RC Navy 2013
|
||||
http://p.loussouarn.free.fr
|
||||
*/
|
||||
|
||||
static void ToggleLed(void); /* Declare Short Action: Toggle a LED */
|
||||
|
||||
/*************************************************/
|
||||
/* STEP #1: Include the needed libraries */
|
||||
/*************************************************/
|
||||
#include <DigiUSB.h> /* The Servo Sequence will be launched by sending "g" character (Go) at the USB interface */
|
||||
#include <RcSeq.h>
|
||||
#include <SoftRcPulseOut.h>
|
||||
|
||||
#define LED_PIN 1
|
||||
|
||||
/*****************************************************************/
|
||||
/* STEP #2: Enumeration of the servos used in the sequence */
|
||||
/*****************************************************************/
|
||||
enum {ROTATION_SERVO=0, UP_DOWN_SERVO , SERVO_NB};
|
||||
|
||||
/*****************************************************************/
|
||||
/* STEP #3: Servos Digital Pins assignment */
|
||||
/*****************************************************************/
|
||||
#define UP_DOWN_SERVO_PIN 2
|
||||
/* /!\ Do not use Pin 3 (used by USB) /!\ */
|
||||
/* /!\ Do not use Pin 4 (used by USB) /!\ */
|
||||
#define ROTATION_SERVO_PIN 5
|
||||
|
||||
/**************************************************************************************/
|
||||
/* STEP #4: Declaration of the angles of the servos for the different motions (in °) */
|
||||
/**************************************************************************************/
|
||||
#define UP_DOWN_ON_DECK_POS 120 /* Zodiac on the deck */
|
||||
#define UP_DOWN_ON_AIR_POS 180 /* Zodiac in the air */
|
||||
#define UP_DOWN_ON_SEA_POS 0 /* Zodiac at sea level */
|
||||
|
||||
#define ROTATION_ABOVE_DECK_POS 90 /* crane at deck side */
|
||||
#define ROTATION_ABOVE_SEA_POS 0 /* crane at sea side */
|
||||
|
||||
|
||||
/***************************************************************************************************************************************/
|
||||
/* STEP #5: Do a temporal diagram showing the start up and the duration of each motions of each servo */
|
||||
/***************************************************************************************************************************************/
|
||||
/*
|
||||
All the start up values (time stamp) have as reference the moment of the sequence startup order (t=0).
|
||||
|
||||
UP_DOWN_SERVO MOTION ROTATION_SERVO MOTION UP_DOWN_SERVO MOTION NO MOTION MOUVEMENT(WAITING) UP_DOWN_SERVO MOTION ROTATION_SERVO MOTION UP_DOWN_SERVO MOTION
|
||||
Order <--DECK_TO_AIR_DURATION_MS--> <--DECK_TO_SEA_ROTATION_DURATION_MS--> <--AIR_TO_SEA_FALLING_DURATION_MS--> <--DELAY_BEFORE_RISING_UP_MS--> <--SEA_TO_AIR_RISING_DURATION_MS--> <--SEA_TO_DECK_ROTATION_DURATION_MS--> <--AIR_TO_DECK_FALLING_DURATION_MS-->
|
||||
|-------------------|-----------------------------|--------------------------------------|------------------------------------|-------------------------------|-----------------------------------|--------------------------------------|-------------------------------------|-->Time Axis
|
||||
0 START_UP_DECK_TO_AIR_MS START_UP_DECK_TO_SEA_ROTATION_MS START_UP_AIR_TO_SEA_FALLING_MS START_UP_SEA_TO_AIR_RISING_MS START_UP_SEA_TO_DECK_ROTATION_MS START_UP_AIR_TO_DECK_FALLING_MS
|
||||
*/
|
||||
|
||||
/**************************************************************************************************************************************************/
|
||||
/* STEP #6: With the help of the temporal diagram, declare start up time, the motion duration of servo and optional delay */
|
||||
/**************************************************************************************************************************************************/
|
||||
/* Tune below all the motion duration. Do not forget to add a trailer 'UL' for each value to force them in Unsigned Long type */
|
||||
#define START_UP_DECK_TO_AIR_MS 0UL /* 0 for immediate start up, but you can put a delay here. Ex: 2000UL, will delay the startup of the whole sequence after 2 seconds */
|
||||
#define DECK_TO_AIR_DURATION_MS 3000UL
|
||||
|
||||
#define START_UP_DECK_TO_SEA_ROTATION_MS (START_UP_DECK_TO_AIR_MS + DECK_TO_AIR_DURATION_MS)
|
||||
#define DECK_TO_SEA_ROTATION_DURATION_MS 3000UL
|
||||
|
||||
#define START_UP_AIR_TO_SEA_FALLING_MS (START_UP_DECK_TO_SEA_ROTATION_MS + DECK_TO_SEA_ROTATION_DURATION_MS)
|
||||
#define AIR_TO_SEA_FALLING_DURATION_MS 9000UL
|
||||
|
||||
#define DELAY_BEFORE_RISING_UP_MS 6000UL
|
||||
|
||||
#define START_UP_SEA_TO_AIR_RISING_MS (START_UP_AIR_TO_SEA_FALLING_MS + AIR_TO_SEA_FALLING_DURATION_MS + DELAY_BEFORE_RISING_UP_MS)
|
||||
#define SEA_TO_AIR_RISING_DURATION_MS 9000UL
|
||||
|
||||
#define START_UP_SEA_TO_DECK_ROTATION_MS (START_UP_SEA_TO_AIR_RISING_MS + SEA_TO_AIR_RISING_DURATION_MS)
|
||||
#define SEA_TO_DECK_ROTATION_DURATION_MS 3000UL
|
||||
|
||||
|
||||
#define START_UP_AIR_TO_DECK_FALLING_MS (START_UP_SEA_TO_DECK_ROTATION_MS + SEA_TO_DECK_ROTATION_DURATION_MS)
|
||||
#define AIR_TO_DECK_FALLING_DURATION_MS 3000UL
|
||||
|
||||
/********************************************************************************************************************/
|
||||
/* STEP #7: Declare here the percentage of motion to be performed at half speed for servo start up and stop */
|
||||
/********************************************************************************************************************/
|
||||
#define START_STOP_PER_CENT 5L /* Percentage of motion performed at half speed for servo start and servo stop (Soft start and Soft stop) */
|
||||
/* Note: due to the lack of programm memory on the DigiSpark, this feature is not used */
|
||||
|
||||
/************************************************************************************************************/
|
||||
/* STEP #11: Use a "SequenceSt_t" structure table to declare the servo sequence */
|
||||
/* For each table entry, arguments are: */
|
||||
/* - Servo Index */
|
||||
/* - Initial Servo Position in ° */
|
||||
/* - Final Servo Position in ° */
|
||||
/* - Motion Start Time Stamp in ms */
|
||||
/* - Motion duration in ms between initial and final position */
|
||||
/* - Percentage of motion performed at half speed for servo start and servo stop (Soft start and Soft stop) */
|
||||
/* Note: START_STOP_PER_CENT not used (MOTION_WITHOUT_SOFT_START_AND_STOP() macro used) */
|
||||
/************************************************************************************************************/
|
||||
SequenceSt_t ZodiacSequence[] PROGMEM = {
|
||||
SHORT_ACTION_TO_PERFORM(ToggleLed, START_UP_DECK_TO_AIR_MS) /* Switch ON the Led at the beginning of the sequence */
|
||||
SHORT_ACTION_TO_PERFORM(ToggleLed, START_UP_AIR_TO_DECK_FALLING_MS+AIR_TO_DECK_FALLING_DURATION_MS) /* Switch OFF the Led at the beginning of the sequence: You are not obliged to put this line at the end of the table */
|
||||
/* 1) The crane lifts the pneumatic Zodiac from the deck to the air and stops */
|
||||
MOTION_WITHOUT_SOFT_START_AND_STOP(UP_DOWN_SERVO, UP_DOWN_ON_DECK_POS, UP_DOWN_ON_AIR_POS, START_UP_DECK_TO_AIR_MS, DECK_TO_AIR_DURATION_MS)
|
||||
/* 2) The crane rotates (90°) to locate the pneumatic Zodiac above the sea */
|
||||
MOTION_WITHOUT_SOFT_START_AND_STOP(ROTATION_SERVO, ROTATION_ABOVE_DECK_POS, ROTATION_ABOVE_SEA_POS, START_UP_DECK_TO_SEA_ROTATION_MS, DECK_TO_SEA_ROTATION_DURATION_MS)
|
||||
/* 3) The crane drops down the pneumatic Zodiac at sea level */
|
||||
MOTION_WITHOUT_SOFT_START_AND_STOP(UP_DOWN_SERVO, UP_DOWN_ON_AIR_POS, UP_DOWN_ON_SEA_POS, START_UP_AIR_TO_SEA_FALLING_MS, AIR_TO_SEA_FALLING_DURATION_MS)
|
||||
/* 4) The crane stops during 6 seconds and 5) The crane lifts up the pneumatic Zodiac from sea level to the air and stops */
|
||||
MOTION_WITHOUT_SOFT_START_AND_STOP(UP_DOWN_SERVO, UP_DOWN_ON_SEA_POS, UP_DOWN_ON_AIR_POS, START_UP_SEA_TO_AIR_RISING_MS, SEA_TO_AIR_RISING_DURATION_MS)
|
||||
/* 6) The crane rotates (90°) to locate the pneumatic Zodiac above the deck */
|
||||
MOTION_WITHOUT_SOFT_START_AND_STOP(ROTATION_SERVO, ROTATION_ABOVE_SEA_POS, ROTATION_ABOVE_DECK_POS, START_UP_SEA_TO_DECK_ROTATION_MS, SEA_TO_DECK_ROTATION_DURATION_MS)
|
||||
/* 7) The crane drops down the pneumatic Zodiac on the deck and stops. The sequence ends. */
|
||||
MOTION_WITHOUT_SOFT_START_AND_STOP(UP_DOWN_SERVO, UP_DOWN_ON_AIR_POS, UP_DOWN_ON_DECK_POS, START_UP_AIR_TO_DECK_FALLING_MS, AIR_TO_DECK_FALLING_DURATION_MS)
|
||||
};
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(LED_PIN, OUTPUT);
|
||||
|
||||
DigiUSB.begin();
|
||||
|
||||
/***************************************************************************/
|
||||
/* STEP #9: Init <RcSeq> library */
|
||||
/***************************************************************************/
|
||||
RcSeq_Init();
|
||||
|
||||
/****************************************************************************************/
|
||||
/* STEP #10: declare the servo command signals with their digital pin number */
|
||||
/****************************************************************************************/
|
||||
RcSeq_DeclareServo(UP_DOWN_SERVO, UP_DOWN_SERVO_PIN);
|
||||
RcSeq_DeclareServo(ROTATION_SERVO, ROTATION_SERVO_PIN);
|
||||
|
||||
/**************************************************************************************************************************/
|
||||
/* STEP #11: declare the sequence command signal (0), the stick level (0), and the sequence to call */
|
||||
/**************************************************************************************************************************/
|
||||
RcSeq_DeclareCommandAndSequence(0, 0, RC_SEQUENCE(ZodiacSequence)); /* 0,0 since there's no RC command */
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
char RxChar;
|
||||
|
||||
/***********************************************************************************************************************************/
|
||||
/* STEP #12: call the refresh function inside the loop() to catch RC commands and to manage the servo positions */
|
||||
/***********************************************************************************************************************************/
|
||||
RcSeq_Refresh();
|
||||
|
||||
/****************************************************************************************************************/
|
||||
/* STEP #13: the sequence can be launched directly by calling the RcSeq_LaunchSequence() function */
|
||||
/****************************************************************************************************************/
|
||||
if(DigiUSB.available())
|
||||
{
|
||||
RxChar=DigiUSB.read();
|
||||
if(RxChar=='g') /* Go ! */
|
||||
{
|
||||
RcSeq_LaunchSequence(ZodiacSequence);
|
||||
}
|
||||
if(RxChar=='t') /* Toggle LED ! */
|
||||
{
|
||||
RcSeq_LaunchShortAction(ToggleLed); /* You can toggle LED during Servo Motion! */
|
||||
}
|
||||
}
|
||||
DigiUSB.refresh();
|
||||
}
|
||||
|
||||
static void ToggleLed(void)
|
||||
{
|
||||
static boolean Status=LOW;
|
||||
Status=!Status; /* Toggle Status */
|
||||
digitalWrite(LED_PIN, Status);
|
||||
}
|
@@ -0,0 +1,115 @@
|
||||
#include <RcSeq.h>
|
||||
#include <TinyPinChange.h>
|
||||
#include <SoftRcPulseIn.h>
|
||||
|
||||
/*
|
||||
IMPORTANT:
|
||||
For this sketch to compile, RC_SEQ_WITH_SOFT_RC_PULSE_IN_SUPPORT and RC_SEQ_WITH_SHORT_ACTION_SUPPORT shall be defined
|
||||
in PathOfTheLibraries/(Digispark)RcSeq/RcSeq.h and RC_SEQ_WITH_SOFT_RC_PULSE_OUT_SUPPORT shall be commented.
|
||||
|
||||
This sketch demonstrates how to easily use a 3 positions switch on a channel of a RC Transmitter with <RcSeq> library.
|
||||
1) If the switch is at the MIDDLE position, a LED will be OFF
|
||||
2) If the switch is at the DOWN position, a LED will be ON
|
||||
2) If the switch is at the UP position, a LED will blink
|
||||
|
||||
This sketch can be extended to a rotactor (up to 8 positions)
|
||||
|
||||
RC Navy (2013)
|
||||
http://p.loussouarn.free.fr
|
||||
|
||||
|
||||
WIRING A TRANSMITTER SIDE WIRING AT RECEIVER SIDE
|
||||
|
||||
.------+-------------> +
|
||||
| |
|
||||
/ | # .-------------------------.
|
||||
| UP o # 4.7K | |
|
||||
| \ # | ARDUINO or ATTINY |
|
||||
3 positions | \ | | | R
|
||||
switch < MIDDLE o o---+-------------> To Tx Channel Rx Channel->|RC_CHANNEL_PIN LED_PIN >----###---|>|----|GND
|
||||
| C | | | LED
|
||||
| # | Sketch |
|
||||
| DOWN o # 4.7K '-------------------------' External or
|
||||
\ | # Built-in LED
|
||||
| |
|
||||
'------+-------------> -
|
||||
|
||||
.------------.------------------------.--------------.
|
||||
| Switch Pos | Pulse Width Range (us) | Action |
|
||||
+------------+------------------------+--------------+
|
||||
| UP | 1000 -> 1270 | LED Blinking |
|
||||
+------------+------------------------+--------------+
|
||||
| MIDDLE | 1360 -> 1630 | LED OFF |
|
||||
+------------+------------------------+--------------+
|
||||
| DOWN | 1720 -> 1990 | LED ON |
|
||||
'------------'------------------------'--------------'
|
||||
|
||||
Note:
|
||||
====
|
||||
<RcSeq> computes automatically the valid pulse width range for each position of the switch.
|
||||
*/
|
||||
|
||||
|
||||
/* Channel Declaration */
|
||||
enum {RC_CHANNEL=0, RC_CHANNEL_NB}; /* Here, as there is a single channel, we could used a simple "#define RC_CHANNEL 0" rather an enumeration */
|
||||
|
||||
#define RC_CHANNEL_PIN 0 // Choose here the pin
|
||||
#define LED_PIN 1 // Choose here the pin
|
||||
|
||||
enum {SW_POS_DOWN=0, SW_POS_MIDDLE, SW_POS_UP, SW_POS_NB}; /* Switch has 3 positions: Down, Middle and Up (For a rotactor with more positions, add positions here) */
|
||||
|
||||
boolean BlinkCmd=false;
|
||||
boolean LedState=false;
|
||||
|
||||
|
||||
void setup()
|
||||
{
|
||||
RcSeq_Init();
|
||||
|
||||
RcSeq_DeclareSignal(RC_CHANNEL, RC_CHANNEL_PIN); /* RC_CHANNEL Channel is assigned to RC_CHANNEL_PIN pin */
|
||||
|
||||
RcSeq_DeclareMultiPosSwitch(RC_CHANNEL, 1000, 2000, SW_POS_NB); /* Tells to <RcSeq> that the RC_CHANNEL channel has SW_POS_NB positions distributed between 1000 and 2000 us */
|
||||
|
||||
RcSeq_DeclareCommandAndShortAction(RC_CHANNEL, SW_POS_DOWN, ActionSwPosDown); /* Action assigned to DOWN position */
|
||||
RcSeq_DeclareCommandAndShortAction(RC_CHANNEL, SW_POS_MIDDLE, ActionSwPosMiddle); /* Action assigned to MIDDLE position */
|
||||
RcSeq_DeclareCommandAndShortAction(RC_CHANNEL, SW_POS_UP, ActionSwPosUp); /* Action assigned to UP position */
|
||||
|
||||
pinMode(LED_PIN, OUTPUT);
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
static uint32_t StartMs=millis();
|
||||
|
||||
/* Refresh RcSeq (mandatory) */
|
||||
RcSeq_Refresh();
|
||||
|
||||
/* Blink Management */
|
||||
if( (BlinkCmd==true) && (millis() - StartMs >= 250UL) )
|
||||
{
|
||||
StartMs=millis();
|
||||
LedState=!LedState;
|
||||
digitalWrite(LED_PIN, LedState);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void ActionSwPosUp() /* This function will be called when the switch is in UP position */
|
||||
{
|
||||
BlinkCmd=true;
|
||||
}
|
||||
|
||||
void ActionSwPosMiddle() /* This function will be called when the switch is in MIDDLE position */
|
||||
{
|
||||
BlinkCmd=false;
|
||||
LedState=false;
|
||||
digitalWrite(LED_PIN, LedState);
|
||||
}
|
||||
|
||||
void ActionSwPosDown() /* This function will be called when the switch is in DOWN position */
|
||||
{
|
||||
BlinkCmd=false;
|
||||
LedState=true;
|
||||
digitalWrite(LED_PIN, LedState);
|
||||
}
|
||||
|
@@ -0,0 +1,135 @@
|
||||
#include <RcSeq.h>
|
||||
#include <TinyPinChange.h>
|
||||
#include <SoftRcPulseIn.h>
|
||||
|
||||
/*
|
||||
IMPORTANT:
|
||||
For this sketch to compile, RC_SEQ_WITH_SOFT_RC_PULSE_IN_SUPPORT and RC_SEQ_WITH_SHORT_ACTION_SUPPORT shall be defined
|
||||
in PathOfTheLibraries/(Digispark)RcSeq/RcSeq.h and RC_SEQ_WITH_SOFT_RC_PULSE_OUT_SUPPORT shall be commented.
|
||||
|
||||
This sketch demonstrates how to easily transform a proportionnal RC channel into 5 digital commands with an ATtiny85.
|
||||
RC Navy (2013)
|
||||
http://p.loussouarn.free.fr
|
||||
|
||||
COMMMAND OF 5 digital outputs from 5 push button replacing a potentiometer in the RC transmitter:
|
||||
================================================================================================
|
||||
Output pins: #1, #2, #3, #4, #5 of an ATtiny85 or a Digispark
|
||||
The receiver output channel is connected to pin#0 of an ATtiny85 or a Digispark
|
||||
A furtive pressure on the push button on the transmitter toggles the corresponding output on the ATtiny85 or a Digispark
|
||||
connected to the receiver output channel.
|
||||
Version with RcSeq library inspired by: http://bateaux.trucs.free.fr/huit_sorties.html
|
||||
|
||||
Modification at RC Transmitter side:
|
||||
===================================
|
||||
Custom keyboard with push buttons
|
||||
=================================
|
||||
Stick Potentiometer 1K 1K 1K 1K 1K 1K
|
||||
=================== .--###---+---###---+---###---+---###---+---###---+---###---.
|
||||
.-. .--. .-. | _.| _.| _.| _.| _.| |
|
||||
|O|--' | |O|-' PB1 |_| PB2 |_| PB3 |_| PB4 |_| PB5 |_| | PB# = Push Button #
|
||||
| | # Replaced with | | '| '| '| '| '| |
|
||||
|O|----># ============> |O|----------+---------+---------+---------+---------+---###---+
|
||||
| | # | | 100K |
|
||||
|O|-- | |O|------------------------------------------------------------'
|
||||
'-' '--' '-'
|
||||
|
||||
|
||||
At RC Receiver side: (The following sketch is related to this ATtiny85 or Digispark)
|
||||
===================
|
||||
|
||||
.---------------.
|
||||
| |
|
||||
| ,------+------.
|
||||
| | VDD |1
|
||||
| | +-- LED, Relay, etc...
|
||||
| | |
|
||||
| | |2
|
||||
| | +-- LED, Relay, etc...
|
||||
| | |
|
||||
| | ATtiny85 |3
|
||||
| | or +-- LED, Relay, etc...
|
||||
.------------. | | Digispark |
|
||||
| |-----' 0| |4
|
||||
| Channel#1|--------------+ +-- LED, Relay, etc...
|
||||
| |-----. | |
|
||||
| RC | | | |5
|
||||
| RECEIVER | | | +-- LED, Relay, etc...
|
||||
| | | | GND |
|
||||
| |- | '------+------'
|
||||
| Channel#2|- | |
|
||||
| |- '---------------'
|
||||
'------------'
|
||||
|
||||
Note:
|
||||
====
|
||||
- Decoupling capacitors are not drawn.
|
||||
- This sketch can easily be extended to 8 outputs by using an ATtiny84 which has more pins.
|
||||
- This sketch cannot work if you are using DigiUSB library as this one monopolizes the "pin change interrupt vector" (which is very time sensitive).
|
||||
- On the other side, its possible to communicate with exterior world by using <SoftSerial>, a library mainly derived from <SoftwareSerial>, but which
|
||||
allow to share the pin change interrupt vector through the <TinyPinChange> library.
|
||||
|
||||
================================================================================================*/
|
||||
|
||||
/* Channel Declaration */
|
||||
enum {RC_CHANNEL, RC_CHANNEL_NB}; /* Here, as there is a single channel, we could used a simple "#define RC_CHANNEL 0" rather an enumeration */
|
||||
|
||||
//==============================================================================================
|
||||
/* Channel Signal of the Receiver */
|
||||
#define RX_CHANNEL_SIGNAL_PIN 0
|
||||
|
||||
//==============================================================================================
|
||||
/* Declaration of the custom keyboard": the pulse width of the push buttons do not need to be equidistant */
|
||||
enum {PUSH_BUTTON1, PUSH_BUTTON2, PUSH_BUTTON3, PUSH_BUTTON4, PUSH_BUTTON5, PUSH_BUTTON_NBR};
|
||||
#define TOLERANCE 40 /* Tolerance +/- (in microseconds): CAUTION, no overlap allowed between 2 adjacent active areas . active area width = 2 x TOLERANCE (us) */
|
||||
KeyMap_t CustomKeyboard[] PROGMEM ={ {CENTER_VALUE_US(1100,TOLERANCE)}, /* PUSH_BUTTON1: +/-40 us */
|
||||
{CENTER_VALUE_US(1300,TOLERANCE)}, /* PUSH_BUTTON2: +/-40 us */
|
||||
{CENTER_VALUE_US(1500,TOLERANCE)}, /* PUSH_BUTTON3: +/-40 us */
|
||||
{CENTER_VALUE_US(1700,TOLERANCE)}, /* PUSH_BUTTON4: +/-40 us */
|
||||
{CENTER_VALUE_US(1900,TOLERANCE)}, /* PUSH_BUTTON5: +/-40 us */
|
||||
};
|
||||
|
||||
//==============================================================================================
|
||||
/* Trick: a macro to write a single time the ToggleAction#() function */
|
||||
#define DECLARE_TOGGLE_ACTION(Idx) \
|
||||
void ToggleAction##Idx(void) \
|
||||
{ \
|
||||
static uint32_t StartMs=millis(); \
|
||||
static boolean Etat=HIGH; \
|
||||
\
|
||||
/* Since version 2.0 of the <RcSeq> library, */ \
|
||||
/* for reactivity reasons, inter-command delay */ \
|
||||
/* shall be managed in the user sketch. */ \
|
||||
if(millis() - StartMs >= 500UL) \
|
||||
{ \
|
||||
StartMs=millis(); \
|
||||
digitalWrite(Idx, Etat); \
|
||||
Etat=!Etat; \
|
||||
} \
|
||||
}
|
||||
|
||||
/* Declaration of the actions using the DECLARE_TOGGLE_ACTION(Idx) macro with Idx = The number of the action and the pin number (The ##Idx will be automatically replaced with the Idx value */
|
||||
DECLARE_TOGGLE_ACTION(1)
|
||||
DECLARE_TOGGLE_ACTION(2)
|
||||
DECLARE_TOGGLE_ACTION(3)
|
||||
DECLARE_TOGGLE_ACTION(4)
|
||||
DECLARE_TOGGLE_ACTION(5)
|
||||
|
||||
//==============================================================================================
|
||||
void setup()
|
||||
{
|
||||
RcSeq_Init();
|
||||
RcSeq_DeclareSignal(RC_CHANNEL, RX_CHANNEL_SIGNAL_PIN); /* RC_CHANNEL Channel is assigned to RX_CHANNEL_SIGNAL_PIN pin */
|
||||
RcSeq_DeclareCustomKeyboard(RC_CHANNEL, RC_CUSTOM_KEYBOARD(CustomKeyboard)); /* The CustomKeyboard map is assigned to the RC_CHANNEL Channel */
|
||||
RcSeq_DeclareCommandAndShortAction(RC_CHANNEL, PUSH_BUTTON1, ToggleAction1);pinMode(1,OUTPUT); /* The ToggleAction1 is assigned to the PUSH_BUTTON1 push button #1 */
|
||||
RcSeq_DeclareCommandAndShortAction(RC_CHANNEL, PUSH_BUTTON2, ToggleAction2);pinMode(2,OUTPUT); /* The ToggleAction2 is assigned to the PUSH_BUTTON1 push button #2 */
|
||||
RcSeq_DeclareCommandAndShortAction(RC_CHANNEL, PUSH_BUTTON3, ToggleAction3);pinMode(3,OUTPUT); /* The ToggleAction3 is assigned to the PUSH_BUTTON1 push button #3 */
|
||||
RcSeq_DeclareCommandAndShortAction(RC_CHANNEL, PUSH_BUTTON4, ToggleAction4);pinMode(4,OUTPUT); /* The ToggleAction4 is assigned to the PUSH_BUTTON1 push button #4 */
|
||||
RcSeq_DeclareCommandAndShortAction(RC_CHANNEL, PUSH_BUTTON5, ToggleAction5);pinMode(5,OUTPUT); /* The ToggleAction5 is assigned to the PUSH_BUTTON1 push button #5 */
|
||||
}
|
||||
//==============================================================================================
|
||||
void loop()
|
||||
{
|
||||
RcSeq_Refresh(); /* This function performs all the needed job asynchronously (non blocking) */
|
||||
}
|
||||
//============================ END OF SKETCH =================================================
|
||||
|
@@ -0,0 +1,154 @@
|
||||
#include <RcSeq.h>
|
||||
#include <TinyPinChange.h> /* Ne pas oublier d'inclure la librairie <TinyPinChange> qui est utilisee par la librairie <RcSeq> */
|
||||
#include <SoftRcPulseIn.h> /* Ne pas oublier d'inclure la librairie <SoftRcPulseIn> qui est utilisee par la librairie <RcSeq> */
|
||||
#include <SoftRcPulseOut.h> /* Ne pas oublier d'inclure la librairie <SoftRcPulseOut> qui est utilisee par la librairie <RcSeq> */
|
||||
|
||||
/*
|
||||
IMPORTANT:
|
||||
Pour compiler ce sketch, RC_SEQ_WITH_SOFT_RC_PULSE_IN_SUPPORT, RC_SEQ_WITH_SHORT_ACTION_SUPPORT et RC_SEQ_WITH_SOFT_RC_PULSE_OUT_SUPPORT
|
||||
doivent etre definis dans ChemainDesLibraires/(Digispark)RcSeq/RcSeq.h.
|
||||
|
||||
RC Navy 2013
|
||||
http://p.loussouarn.free.fr
|
||||
|
||||
Ce sketch de demo de la librairie RcSeq montre comment configurer tres facilement la commande d'actions ou de sequences de servo predefinies.
|
||||
La commande peut etre:
|
||||
- un manche de l'emetteur RC avec possibilité de definir jusqu'a 8 positions "actives" (le nombre de position doit etre pair: neutre au milieu)
|
||||
- un clavier: un montage resistances/boutons-poussoirs remplacant le potentiometre du manche d'un emetteur RC
|
||||
(les resistances doivent etre d'egales valeurs avec une 2 resistances identiques "au centre/neutre" pour la zone inactive)
|
||||
- un clavier "maison": un montage resistances/boutons-poussoirs remplacant le potentiometre du manche d'un emetteur RC avec des resistances pas forcement identiques
|
||||
(la largeur d'impulsion pour chaque bouton-poussoir est define dans une table, une tolerance est egalement prevue)
|
||||
Les 3 exemples sont traites dans ce sketch de demo.
|
||||
*/
|
||||
|
||||
enum {RC_VOIE1, RC_VOIE2, RC_VOIE3, NBR_VOIES_RC}; /* Declaration des voies */
|
||||
|
||||
enum {BP1, BP2, NBR_BP}; /* Declaration des Boutons-Poussoirs (On peut aller jusqu'à BP8) */
|
||||
|
||||
enum {POS_MINUS1, POS_PLUS1,NBR_POS}; /* Declaration des positions du Manche on peut aller de POS_MOINS2 à POS_PLUS2 (4 Positions actives Max)*/
|
||||
|
||||
|
||||
/* Declaration d'un clavier "Maison": les impulsions des Boutons-Poussoirs n'ont pas besoin d'etre equidistantes */
|
||||
enum {BP_MAISON1, BP_MAISON2, BP_MAISON3, NBR_BP_MAISON};
|
||||
#define TOLERANCE 40 /* Tolerance en + ou en - (en micro-seconde) */
|
||||
KeyMap_t ClavierMaison[] PROGMEM ={ {VALEUR_CENTRALE_US(1100,TOLERANCE)}, /* BP_MAISON1: 1100 +/-40 us */
|
||||
{VALEUR_CENTRALE_US(1300,TOLERANCE)}, /* BP_MAISON2: 1300 +/-40 us */
|
||||
{VALEUR_CENTRALE_US(1700,TOLERANCE)}, /* BP_MAISON3: 1700 +/-40 us */
|
||||
};
|
||||
|
||||
enum {AZIMUT=0, ELEVATION , NBR_SERVO}; /* Delaration de tous les servos, 2 dans cet exemple (On peut déclaer jusqu'à 8 servos) */
|
||||
|
||||
/* Declaration des broches reliees aux sorties du recepteur RC */
|
||||
#define BROCHE_SIGNAL_RECEPTEUR_VOIE1 8
|
||||
#define BROCHE_SIGNAL_RECEPTEUR_VOIE2 2
|
||||
#define BROCHE_SIGNAL_RECEPTEUR_VOIE3 9
|
||||
|
||||
/* Declaration des broches de commande des servos */
|
||||
#define BROCHE_SIGNAL_SERVO_EL 3
|
||||
#define BROCHE_SIGNAL_SERVO_AZ 4
|
||||
|
||||
/* Declaration des differents angles des servos */
|
||||
#define ELEVATION_POS_PONT 120 /* position zodiac sur pont (Pos A) */
|
||||
#define ELEVATION_POS_HAUT 180 /* position zodiac en haut (Pos B) */
|
||||
#define ELEVATION_POS_MER 0 /* position zodiac dans l'eau (pos C) */
|
||||
|
||||
#define AZIMUT_POS_PONT 90 /* position rotation sur pont */
|
||||
#define AZIMUT_POS_MER 0 /* position rotation sur mer */
|
||||
|
||||
/* Declaration des moments de demarrage ainsi que la duree des mouvement de servo */
|
||||
#define DEMARRAGE_MONTEE_PONT_HAUT_MS 0L /* 0 pour demarrage immediat, mais on peut mettre une tempo ici. Ex 2000L, va differer la sequence complete de 2 secondes */
|
||||
#define DUREE_MONTEE_PONT_HAUT_MS 3000L
|
||||
|
||||
#define DEMARRAGE_ROTATION_PONT_MER_MS (DEMARRAGE_MONTEE_PONT_HAUT_MS+DUREE_MONTEE_PONT_HAUT_MS)
|
||||
#define DUREE_ROTATION_PONT_MER_MS 3000L
|
||||
|
||||
#define DEMARRAGE_DESCENTE_HAUT_MER_MS (DEMARRAGE_ROTATION_PONT_MER_MS+DUREE_ROTATION_PONT_MER_MS)
|
||||
#define DUREE_DESCENTE_HAUT_MER_MS 9000L
|
||||
|
||||
#define ATTENTE_AVANT_REMONTEE_MS 6000L /* Exemple d'utilisation d'une temporisation */
|
||||
|
||||
#define DEMARRAGE_MONTEE_MER_HAUT_MS (DEMARRAGE_DESCENTE_HAUT_MER_MS+DUREE_DESCENTE_HAUT_MER_MS+ATTENTE_AVANT_REMONTEE_MS)
|
||||
#define DUREE_MONTEE_MER_HAUT_MS 9000L
|
||||
|
||||
#define DEMARRAGE_ROTATION_MER_PONT_MS (DEMARRAGE_MONTEE_MER_HAUT_MS+DUREE_MONTEE_MER_HAUT_MS)
|
||||
#define DUREE_ROTATION_MER_PONT_MS 3000L
|
||||
|
||||
|
||||
#define DEMARRAGE_DESCENTE_HAUT_PONT_MS (DEMARRAGE_ROTATION_MER_PONT_MS+DUREE_ROTATION_MER_PONT_MS)
|
||||
#define DUREE_DESCENTE_HAUT_PONT_MS 3000L
|
||||
|
||||
#define DEM_ARRET_POUR_CENT 5 /* Pourcentage du mouvement devant etre effectue a mi-vitesse pour demarrage servo et arret servo (Soft start et Soft stop) */
|
||||
|
||||
/* Declaration de la table de sequence des mouvements des servo et des actions courtes */
|
||||
SequenceSt_t SequenceServoEtActionCourte[] PROGMEM = {
|
||||
ACTION_COURTE_A_EFFECTUER(InverseLed,DEMARRAGE_MONTEE_PONT_HAUT_MS)
|
||||
/* Montee du Zodiac du pont vers la position haute */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(ELEVATION,ELEVATION_POS_PONT,ELEVATION_POS_HAUT,DEMARRAGE_MONTEE_PONT_HAUT_MS,DUREE_MONTEE_PONT_HAUT_MS,DEM_ARRET_POUR_CENT)
|
||||
/* Rotation Grue du pont vers la mer */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(AZIMUT,AZIMUT_POS_PONT,AZIMUT_POS_MER,DEMARRAGE_ROTATION_PONT_MER_MS,DUREE_ROTATION_PONT_MER_MS,DEM_ARRET_POUR_CENT)
|
||||
/* Descente du Zodiac depuis la position haute vers la la mer */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(ELEVATION,ELEVATION_POS_HAUT,ELEVATION_POS_MER,DEMARRAGE_DESCENTE_HAUT_MER_MS,DUREE_DESCENTE_HAUT_MER_MS,DEM_ARRET_POUR_CENT)
|
||||
ACTION_COURTE_A_EFFECTUER(InverseLed,DEMARRAGE_DESCENTE_HAUT_MER_MS+DUREE_DESCENTE_HAUT_MER_MS)
|
||||
ACTION_COURTE_A_EFFECTUER(InverseLed,DEMARRAGE_MONTEE_MER_HAUT_MS)
|
||||
/* Montee du Zodiac de la mer vers la position haute */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(ELEVATION,ELEVATION_POS_MER,ELEVATION_POS_HAUT,DEMARRAGE_MONTEE_MER_HAUT_MS,DUREE_MONTEE_MER_HAUT_MS,DEM_ARRET_POUR_CENT)
|
||||
/* Rotation Grue de la mer vers le pont */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(AZIMUT,AZIMUT_POS_MER,AZIMUT_POS_PONT,DEMARRAGE_ROTATION_MER_PONT_MS,DUREE_ROTATION_MER_PONT_MS,DEM_ARRET_POUR_CENT)
|
||||
/* Descente du Zodiac de la position haute vers le pont */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(ELEVATION,ELEVATION_POS_HAUT,ELEVATION_POS_PONT,DEMARRAGE_DESCENTE_HAUT_PONT_MS,DUREE_DESCENTE_HAUT_PONT_MS,DEM_ARRET_POUR_CENT)
|
||||
ACTION_COURTE_A_EFFECTUER(InverseLed,DEMARRAGE_DESCENTE_HAUT_PONT_MS+DUREE_DESCENTE_HAUT_PONT_MS)
|
||||
};
|
||||
|
||||
#define LED 13
|
||||
|
||||
void setup()
|
||||
{
|
||||
#if !defined(__AVR_ATtiny24__) && !defined(__AVR_ATtiny44__) && !defined(__AVR_ATtiny84__) && !defined(__AVR_ATtiny25__) && !defined(__AVR_ATtiny45__) && !defined(__AVR_ATtiny85__)
|
||||
Serial.begin(9600);
|
||||
Serial.print("RcSeq library V");Serial.print(RcSeq_LibTextVersionRevision());Serial.print(" demo: RcSeqDemo");
|
||||
#endif
|
||||
RcSeq_Init();
|
||||
|
||||
/* Declaration des Servos */
|
||||
RcSeq_DeclareServo(ELEVATION, BROCHE_SIGNAL_SERVO_EL);
|
||||
RcSeq_DeclareServo(AZIMUT, BROCHE_SIGNAL_SERVO_AZ);
|
||||
|
||||
/* Commande d'une action courte et d'une sequence de servos avec 2 BP du clavier de la VOIE1 */
|
||||
RcSeq_DeclareSignal(RC_VOIE1,BROCHE_SIGNAL_RECEPTEUR_VOIE1);
|
||||
RcSeq_DeclareClavier(RC_VOIE1, 1000, 2000, NBR_BP);
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE1, BP1, InverseLed);
|
||||
RcSeq_DeclareCommandeEtSequence(RC_VOIE1, BP2, RC_SEQUENCE(SequenceServoEtActionCourte));
|
||||
|
||||
/* Commande d'une action courte et d'une sequence de servos avec le manche de la VOIE2 */
|
||||
RcSeq_DeclareSignal(RC_VOIE2,BROCHE_SIGNAL_RECEPTEUR_VOIE2);
|
||||
RcSeq_DeclareManche(RC_VOIE2, 1000, 2000, NBR_POS);
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE2, POS_MINUS1, InverseLed);
|
||||
RcSeq_DeclareCommandeEtSequence(RC_VOIE2, POS_PLUS1, RC_SEQUENCE(SequenceServoEtActionCourte));
|
||||
|
||||
/* Commande d'une action courte et d'une sequence de servos avec le clavier "maison" de la VOIE3 */
|
||||
RcSeq_DeclareSignal(RC_VOIE3,BROCHE_SIGNAL_RECEPTEUR_VOIE3);
|
||||
RcSeq_DeclareClavierMaison(RC_VOIE3, RC_CLAVIER_MAISON(ClavierMaison));
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE3, BP_MAISON1, InverseLed);
|
||||
RcSeq_DeclareCommandeEtSequence(RC_VOIE3, BP_MAISON3, RC_SEQUENCE(SequenceServoEtActionCourte));
|
||||
|
||||
pinMode(LED, OUTPUT);
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
RcSeq_Rafraichit();
|
||||
}
|
||||
|
||||
/* Action associee au BP1 de la VOIE1 ou au manche position basse de la VOIE2 ou au BP_MAISON1 de la VOIE3 */
|
||||
void InverseLed(void)
|
||||
{
|
||||
static uint32_t DebutMs=millis(); /* static, pour conserver l'etat entre 2 appels de la fonction */
|
||||
static boolean Etat=HIGH; /* static, pour conserver l'etat entre 2 appels de la fonction */
|
||||
|
||||
if(millis() - DebutMs >= 500UL) /* Depuis RcSeq V2.0, la tempo inter-commande doit etre geree dans le sketch utilisateur */
|
||||
{
|
||||
DebutMs=millis();
|
||||
digitalWrite(LED, Etat);
|
||||
Etat=!Etat; /* Au prochain appel de InverseLed(), l'etat de la LED sera inverse */
|
||||
}
|
||||
}
|
@@ -0,0 +1,218 @@
|
||||
/*
|
||||
IMPORTANT:
|
||||
=========
|
||||
La librairie "RcSeq" utilise la technique de programmation dite "asynchrone", c'est-a-dire qu'aucun appel a des fonctions bloquantes telles que la fonction delay()
|
||||
ou la fonction pulseIn() n'est effectue.
|
||||
Ceci se traduit par un temps de boucle principale inferieur a 70 micro-secondes bien que les servos soient rafraichis toutes les 20ms a l'aide de la methode
|
||||
Rafraichit() qui doit etre appelee dans la fonction loop(). Cela laisse donc enormement de temps au micro-controleur pour faire "en meme temps" d'autres taches.
|
||||
Par exemple dans ce sketch, il est possible d'envoyer la commande 'i' via la serial console pour inverser l'etat de la LED connectee a la pin digitale 13 pendant
|
||||
que les servos sont en mouvement.
|
||||
|
||||
Ce sketch illustre l'utilisation de la librairie "RcSeq" qui permet de sequencer tres facilement des servos et des actions courtes a l'aide de la librairie "SoftwareServo".
|
||||
Les actions courtes doivent durer moins de 20ms pour ne pas perturber la commande des servos.
|
||||
Si ce sketch est charge dans une carte UNO, il est possible de lancer la sequence en tapant 'g' puis Entree dans la serial console de l'EDI Arduino.
|
||||
En tapant 'i' puis Entree, l'action InverseLed() est executee. Comme "RcSeq" est asynchrone, il est possible de le faire pendant que les servos tournent.
|
||||
La possibilite de lancer les sequence et action courte via la serial console evite de sortir et cabler l'ensemble RC pour lancer la sequence et l'action.
|
||||
|
||||
Dans cet exemple, la sequence declaree est la mise a l'eau d'un Zodiac avec une grue depuis un bateau de service type baliseur:
|
||||
1) La grue souleve le Zodiac en position haute puis s'arrete
|
||||
2) La grue fait une rotation de 90° pour positionner le Zodiac au dessus de l'eau
|
||||
3) La grue descend le Zodiac au niveau de l'eau
|
||||
4) La grue reste sans action pendant 6 secondes
|
||||
5) La grue remonte le Zodiac en position haute puis s'arrete
|
||||
6) La grue fait une rotation de 90° pour positionner le Zodiac au dessus du pont
|
||||
7) La grue descend le Zodiac en position basse puis s'arrete. La sequence est terminee.
|
||||
Cette sequence utilise:
|
||||
- 2 commande RC sur le meme manche (Impulsion d'au moins 1/4 de seconde en position mi-course pour l'action courte et extreme pour la sequnce avec le manche de l'emetteur RC)
|
||||
ou la commande 'i' ou 'g' depuis la serial console de l'EDI Arduino
|
||||
- 2 servos (un servo "Azimut" pour les rotations et un servo "Elevation" pour la montee/descente)
|
||||
*/
|
||||
|
||||
/***************************************************/
|
||||
/* ETAPE N°1: Inclure les 4 librairies necessaires */
|
||||
/***************************************************/
|
||||
#include <RcSeq.h>
|
||||
#include <TinyPinChange.h> /* Ne pas oublier d'inclure la librairie <TinyPinChange> qui est utilisee par la librairie <RcSeq> */
|
||||
#include <SoftRcPulseIn.h> /* Ne pas oublier d'inclure la librairie <SoftRcPulseIn> qui est utilisee par la librairie <RcSeq> */
|
||||
#include <SoftRcPulseOut.h> /* Ne pas oublier d'inclure la librairie <SoftRcPulseOut> qui est utilisee par la librairie <RcSeq> */
|
||||
|
||||
/*****************************************************/
|
||||
/* ETAPE N°2: Enumeration des signaux de commande RC */
|
||||
/*****************************************************/
|
||||
enum {SIGNAL_RC=0, NBR_SIGNAL}; /* Delaration de tous les signaux de commande (sortie voie du recepteur), un seul dans cet exemple */
|
||||
|
||||
/****************************************************************/
|
||||
/* ETAPE N°3: Enumeration des differentes position du manche RC */
|
||||
/****************************************************************/
|
||||
enum {RC_IMPULSION_NIVEAU_MOINS_2, RC_IMPULSION_NIVEAU_MOINS_1, RC_IMPULSION_NIVEAU_PLUS_1, RC_IMPULSION_NIVEAU_PLUS_2, NBR_RC_IMPULSIONS};
|
||||
|
||||
/*****************************************************************/
|
||||
/* ETAPE N°4: Enumeration des servos utilisés pour les sequences */
|
||||
/*****************************************************************/
|
||||
enum {AZIMUT=0, ELEVATION , NBR_SERVO}; /* Delaration de tous les servos, 2 dans cet exemple */
|
||||
|
||||
/*********************************************************************************/
|
||||
/* ETAPE N°5: Affectation des broches Digitales (PIN) des signaux de commande RC */
|
||||
/*********************************************************************************/
|
||||
#define BROCHE_SIGNAL_RECEPTEUR 2
|
||||
|
||||
/*****************************************************************************************/
|
||||
/* ETAPE N°6: Affectation des broches Digitales (PIN) des signaux de commande des servos */
|
||||
/*****************************************************************************************/
|
||||
#define BROCHE_SIGNAL_SERVO_EL 3
|
||||
#define BROCHE_SIGNAL_SERVO_AZ 4
|
||||
|
||||
/**************************************************************************************/
|
||||
/* ETAPE N°7: Declaration des angles des servos pour les differents mouvements (en °) */
|
||||
/**************************************************************************************/
|
||||
#define ELEVATION_POS_PONT 120 /* position zodiac sur pont (Pos A) */
|
||||
#define ELEVATION_POS_HAUT 180 /* position zodiac en haut (Pos B) */
|
||||
#define ELEVATION_POS_MER 0 /* position zodiac dans l'eau (pos C) */
|
||||
|
||||
#define AZIMUT_POS_PONT 90 /* position rotation sur pont */
|
||||
#define AZIMUT_POS_MER 0 /* position rotation sur mer */
|
||||
|
||||
|
||||
/***************************************************************************************************************************************/
|
||||
/* ETAPE N°8: Faire un croquis temporel faisant apparaitre les moments de demarrages et les duree des mouvements des differents servos */
|
||||
/***************************************************************************************************************************************/
|
||||
/*
|
||||
Toutes les valeurs de demarrage ont comme reference le moment de l'ordre de demarrage de sequence (t=0).
|
||||
|
||||
MOUVEMENT SERVO ELEVATION MOUVEMENT SERVO AZIMUT MOUVEMENT SERVO ELEVATION AUCUN MOUVEMENT(ATTENTE) MOUVEMENT SERVO ELEVATION MOUVEMENT SERVO AZIMUT MOUVEMENT SERVO ELEVATION
|
||||
Ordre <---DUREE_MONTEE_PONT_HAUT_MS--> <--DUREE_ROTATION_PONT_MER_MS----> <--DUREE_DESCENTE_HAUT_MER_MS--><--ATTENTE_AVANT_REMONTEE_MS--><---DUREE_MONTEE_MER_HAUT_MS---><----DUREE_ROTATION_MER_PONT_MS-----><--DUREE_DESCENTE_HAUT_PONT_MS-->
|
||||
|-------------------|--------------------------------|----------------------------------|--------------------------------|------------------------------|-------------------------------|------------------------------------|--------------------------------|-->Axe du Temps
|
||||
0 DEMARRAGE_MONTEE_PONT_HAUT_MS DEMARRAGE_ROTATION_PONT_MER_MS DEMARRAGE_DESCENTE_HAUT_MER_MS DEMARRAGE_MONTEE_MER_HAUT_MS DEMARRAGE_ROTATION_MER_PONT_MS DEMARRAGE_DESCENTE_HAUT_PONT_MS
|
||||
*/
|
||||
|
||||
/**************************************************************************************************************************************************/
|
||||
/* ETAPE N°9: A l'aide du croquis temporel, declarer les moments de demarrage, les durees des movement de servo et les eventuelles temporisations */
|
||||
/**************************************************************************************************************************************************/
|
||||
/* Regler ci-dessous les temps de mouvement en ms. Ne pas oulier de d'ajouter un 'L' a la fin de la valeur pour forcer les valeurs en type Long */
|
||||
#define DEMARRAGE_MONTEE_PONT_HAUT_MS 0L /* 0 pour demarrage immediat, mais on peut mettre une tempo ici. Ex 2000L, va differer la sequence complete de 2 secondes */
|
||||
#define DUREE_MONTEE_PONT_HAUT_MS 3000L
|
||||
|
||||
#define DEMARRAGE_ROTATION_PONT_MER_MS (DEMARRAGE_MONTEE_PONT_HAUT_MS+DUREE_MONTEE_PONT_HAUT_MS)
|
||||
#define DUREE_ROTATION_PONT_MER_MS 3000L
|
||||
|
||||
#define DEMARRAGE_DESCENTE_HAUT_MER_MS (DEMARRAGE_ROTATION_PONT_MER_MS+DUREE_ROTATION_PONT_MER_MS)
|
||||
#define DUREE_DESCENTE_HAUT_MER_MS 9000L
|
||||
|
||||
#define ATTENTE_AVANT_REMONTEE_MS 6000L /* Exemple d'utilisation d'une temporisation */
|
||||
|
||||
#define DEMARRAGE_MONTEE_MER_HAUT_MS (DEMARRAGE_DESCENTE_HAUT_MER_MS+DUREE_DESCENTE_HAUT_MER_MS+ATTENTE_AVANT_REMONTEE_MS)
|
||||
#define DUREE_MONTEE_MER_HAUT_MS 9000L
|
||||
|
||||
#define DEMARRAGE_ROTATION_MER_PONT_MS (DEMARRAGE_MONTEE_MER_HAUT_MS+DUREE_MONTEE_MER_HAUT_MS)
|
||||
#define DUREE_ROTATION_MER_PONT_MS 3000L
|
||||
|
||||
|
||||
#define DEMARRAGE_DESCENTE_HAUT_PONT_MS (DEMARRAGE_ROTATION_MER_PONT_MS+DUREE_ROTATION_MER_PONT_MS)
|
||||
#define DUREE_DESCENTE_HAUT_PONT_MS 3000L
|
||||
|
||||
/********************************************************************************************************************/
|
||||
/* ETAPE N°10: Declarer le pourcentage de mouvement devant etre a mi-vitesse pour les demarrage et arret des servos */
|
||||
/********************************************************************************************************************/
|
||||
#define DEM_ARRET_POUR_CENT 5 /* Pourcentage du mouvement devant etre effectue a mi-vitesse pour demarrage servo et arret servo (Soft start et Soft stop) */
|
||||
|
||||
/***************************************************************************************************************************************************************/
|
||||
/* ETAPE N°11: Dans une structure de type "SequenceSt_t", a l'aide de la macro MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(), declarer le N° de servo, l'angle initial, */
|
||||
/* l'angle final, le moment de demarrage, la duree du mouvement et le pourcentage de mouvement devant etre a mi-vitesse pour les demarrage et arret des servos */
|
||||
/* Il est possible d'inclure des actions courtes. Il suffit d'utiliser la macro ACTION_COURTE_A_EFFECTUER() en donnant le nom de la fonction a appeler et le */
|
||||
/* moment ou l'action doit avoir lieu. Dans cet exemple, la LED s'allume pendant que les servos tournent et s'eteint pendant la pause de 6 secondes. */
|
||||
/***************************************************************************************************************************************************************/
|
||||
SequenceSt_t SequencePlus2[] PROGMEM = {
|
||||
ACTION_COURTE_A_EFFECTUER(InverseLed,DEMARRAGE_MONTEE_PONT_HAUT_MS)
|
||||
/* Montee du Zodiac du pont vers la position haute */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(ELEVATION,ELEVATION_POS_PONT,ELEVATION_POS_HAUT,DEMARRAGE_MONTEE_PONT_HAUT_MS,DUREE_MONTEE_PONT_HAUT_MS,DEM_ARRET_POUR_CENT)
|
||||
/* Rotation Grue du pont vers la mer */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(AZIMUT,AZIMUT_POS_PONT,AZIMUT_POS_MER,DEMARRAGE_ROTATION_PONT_MER_MS,DUREE_ROTATION_PONT_MER_MS,DEM_ARRET_POUR_CENT)
|
||||
/* Descente du Zodiac depuis la position haute vers la la mer */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(ELEVATION,ELEVATION_POS_HAUT,ELEVATION_POS_MER,DEMARRAGE_DESCENTE_HAUT_MER_MS,DUREE_DESCENTE_HAUT_MER_MS,DEM_ARRET_POUR_CENT)
|
||||
ACTION_COURTE_A_EFFECTUER(InverseLed,DEMARRAGE_DESCENTE_HAUT_MER_MS+DUREE_DESCENTE_HAUT_MER_MS)
|
||||
ACTION_COURTE_A_EFFECTUER(InverseLed,DEMARRAGE_MONTEE_MER_HAUT_MS)
|
||||
/* Montee du Zodiac de la mer vers la position haute */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(ELEVATION,ELEVATION_POS_MER,ELEVATION_POS_HAUT,DEMARRAGE_MONTEE_MER_HAUT_MS,DUREE_MONTEE_MER_HAUT_MS,DEM_ARRET_POUR_CENT)
|
||||
/* Rotation Grue de la mer vers le pont */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(AZIMUT,AZIMUT_POS_MER,AZIMUT_POS_PONT,DEMARRAGE_ROTATION_MER_PONT_MS,DUREE_ROTATION_MER_PONT_MS,DEM_ARRET_POUR_CENT)
|
||||
/* Descente du Zodiac de la position haute vers le pont */
|
||||
MVT_AVEC_DEBUT_ET_FIN_MVT_LENTS(ELEVATION,ELEVATION_POS_HAUT,ELEVATION_POS_PONT,DEMARRAGE_DESCENTE_HAUT_PONT_MS,DUREE_DESCENTE_HAUT_PONT_MS,DEM_ARRET_POUR_CENT)
|
||||
ACTION_COURTE_A_EFFECTUER(InverseLed,DEMARRAGE_DESCENTE_HAUT_PONT_MS+DUREE_DESCENTE_HAUT_PONT_MS)
|
||||
};
|
||||
|
||||
#define LED 13
|
||||
|
||||
void setup()
|
||||
{
|
||||
|
||||
#if !defined(__AVR_ATtiny24__) && !defined(__AVR_ATtiny44__) && !defined(__AVR_ATtiny84__) && !defined(__AVR_ATtiny25__) && !defined(__AVR_ATtiny45__) && !defined(__AVR_ATtiny85__)
|
||||
Serial.begin(9600);
|
||||
Serial.print("RcSeq library V");Serial.print(RcSeq_LibTextVersionRevision());Serial.print(" demo: RcSeqZodiac");
|
||||
#endif
|
||||
|
||||
/***************************************************************************/
|
||||
/* ETAPE N°12: Appeler la fonction d'initialisation de la libraire "RcSeq" */
|
||||
/***************************************************************************/
|
||||
RcSeq_Init();
|
||||
|
||||
/**************************************************************************************/
|
||||
/* ETAPE N°13: declarer le(s) signal(aux) de commande RC avec leur N° de pin digitale */
|
||||
/**************************************************************************************/
|
||||
RcSeq_DeclareSignal(SIGNAL_RC,BROCHE_SIGNAL_RECEPTEUR);
|
||||
|
||||
/******************************************************************************************/
|
||||
/* ETAPE N°14: que le signal RC est associe a un manche qui a NBR_RC_IMPULSIONS positions */
|
||||
/*****************************************************************************************/
|
||||
RcSeq_DeclareManche(SIGNAL_RC, 1000, 2000, NBR_RC_IMPULSIONS);
|
||||
|
||||
/********************************************************************************************/
|
||||
/* ETAPE N°15: declarer le(s) signal(aux) ce commande de servo avec leur N° de pin digitale */
|
||||
/********************************************************************************************/
|
||||
RcSeq_DeclareServo(ELEVATION, BROCHE_SIGNAL_SERVO_EL);
|
||||
RcSeq_DeclareServo(AZIMUT, BROCHE_SIGNAL_SERVO_AZ);
|
||||
|
||||
/**************************************************************************************************************************/
|
||||
/* ETAPE N°16: declarer le signal de commande de sequence, le niveau du manche, et la sequence ou action courte a appeler */
|
||||
/**************************************************************************************************************************/
|
||||
RcSeq_DeclareCommandeEtSequence(SIGNAL_RC, RC_IMPULSION_NIVEAU_PLUS_2, RC_SEQUENCE(SequencePlus2)); // Voici comment declarer une sequence actionnee par une impulsion Niveau Plus 2 (manche en position extreme pendant au moins 250 ms)
|
||||
|
||||
pinMode(LED, OUTPUT);
|
||||
RcSeq_DeclareCommandeEtActionCourte(SIGNAL_RC, RC_IMPULSION_NIVEAU_MOINS_1, InverseLed); // Voici comment declarer une action actionnee par une impulsion Niveau Moins 1 (manche en position mi-course pendant au moins 250 ms)
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
|
||||
/***********************************************************************************************************************************/
|
||||
/* ETAPE N°17: appeler la fonction Rafraichit dans la fonction loop() pour capter les commandes RC et gerer la position des servos */
|
||||
/***********************************************************************************************************************************/
|
||||
RcSeq_Rafraichit();
|
||||
|
||||
/******************************************************************************************************/
|
||||
/* ETAPE N°18: optionnellement, autoriser le lancement des Sequences ou Actions via la serial console */
|
||||
/******************************************************************************************************/
|
||||
#if !defined(__AVR_ATtiny24__) && !defined(__AVR_ATtiny44__) && !defined(__AVR_ATtiny84__) && !defined(__AVR_ATtiny25__) && !defined(__AVR_ATtiny45__) && !defined(__AVR_ATtiny85__)
|
||||
int RxChar;
|
||||
/* Lance la sequence en envoyant le caractere 'g' dans la serial console: cela permet de tester la sequence de servo avec une carte UNO sans utiliser d'ensemble RC */
|
||||
if(Serial.available() > 0)
|
||||
{
|
||||
RxChar=Serial.read();
|
||||
if(tolower(RxChar)=='g') /* Go ! */
|
||||
{
|
||||
RcSeq_LanceSequence(SequencePlus2);
|
||||
}
|
||||
if(tolower(RxChar)=='i') /* inverse led ! */
|
||||
{
|
||||
RcSeq_LanceActionCourte(InverseLed);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Action associee au manche a mi-course */
|
||||
void InverseLed(void)
|
||||
{
|
||||
static boolean Etat=HIGH; /* static, pour conserver l'etat entre 2 appels de la fonction */
|
||||
digitalWrite(LED, Etat);
|
||||
Etat=!Etat; /* AU prochain appel de InverseLed(), l'etat de la LED sera inverse */
|
||||
}
|
@@ -0,0 +1,92 @@
|
||||
#include <RcSeq.h>
|
||||
#include <TinyPinChange.h> /* Ne pas oublier d'inclure la librairie <TinyPinChange> qui est utilisee par la librairie <RcSeq> */
|
||||
#include <SoftRcPulseIn.h> /* Ne pas oublier d'inclure la librairie <SoftRcPulseIn> qui est utilisee par la librairie <RcSeq> */
|
||||
|
||||
/*
|
||||
IMPORTANT:
|
||||
Pour compiler ce sketch, RC_SEQ_WITH_SOFT_RC_PULSE_IN_SUPPORT et RC_SEQ_WITH_SHORT_ACTION_SUPPORT doivent etre definie
|
||||
dans ChemainDesLibraires/(Digispark)RcSeq/RcSeq.h et RC_SEQ_WITH_SOFT_RC_PULSE_OUT_SUPPORT doit etre mis en commentaire.
|
||||
|
||||
RC Navy 2013
|
||||
http://p.loussouarn.free.fr
|
||||
*/
|
||||
|
||||
/*================= COMMMANDE DE 8 SORTIES ON/OFF PAR 8 INTERS POUSSOIR ========================
|
||||
Les 8 relais ou sont connectés aux prise n°1,2,3,4,5,6,7,8 d'un ATtiny84
|
||||
La voie du récepteur est connecté à la prise n°0 de l'ATtiny84
|
||||
Un appui furtif sur un bouton fait actionne le relais correspondant qui reste collé.
|
||||
Un deuxième appui furtif sur le même bouton fait décoller le relais correspondant.
|
||||
Version avec librairie RcSeq d'apres l'exemple de http://bateaux.trucs.free.fr/huit_sorties.html
|
||||
================================================================================================*/
|
||||
|
||||
/* Declaration des voies */
|
||||
enum {RC_VOIE, NBR_VOIES_RC}; /* Ici, comme il n'y a qu'une voie, on aurait pu faire un simple "#define RC_VOIE 0" a la place de l'enumeration */
|
||||
|
||||
//==============================================================================================
|
||||
/* Declaration du signal du recepteur */
|
||||
#define BROCHE_SIGNAL_RECEPTEUR_VOIE 0
|
||||
|
||||
//==============================================================================================
|
||||
/* Declaration d'un clavier "Maison": les impulsions des Boutons-Poussoirs n'ont pas besoin d'etre equidistantes */
|
||||
enum {BP1, BP2, BP3, BP4, BP5, BP6, BP7, BP8, NBR_BP};
|
||||
#define TOLERANCE 40 /* Tolerance en + ou en - (en micro-seconde): ATTENTION, il ne doit pas y avoir recouvrement entre 2 zones actives adjascentes. Zone active = 2 x TOLERANCE (us) */
|
||||
KeyMap_t ClavierMaison[] PROGMEM ={ {VALEUR_CENTRALE_US(1100,TOLERANCE)}, /* BP1: +/-40 us */
|
||||
{VALEUR_CENTRALE_US(1200,TOLERANCE)}, /* BP2: +/-40 us */
|
||||
{VALEUR_CENTRALE_US(1300,TOLERANCE)}, /* BP3: +/-40 us */
|
||||
{VALEUR_CENTRALE_US(1400,TOLERANCE)}, /* BP4: +/-40 us */
|
||||
{VALEUR_CENTRALE_US(1600,TOLERANCE)}, /* BP5: +/-40 us */
|
||||
{VALEUR_CENTRALE_US(1700,TOLERANCE)}, /* BP6: +/-40 us */
|
||||
{VALEUR_CENTRALE_US(1800,TOLERANCE)}, /* BP7: +/-40 us */
|
||||
{VALEUR_CENTRALE_US(1900,TOLERANCE)}, /* BP8: +/-40 us */
|
||||
};
|
||||
|
||||
//==============================================================================================
|
||||
/* Astuce: une macro pour n'ecrire qu'une seule fois la fonction ActionX() */
|
||||
#define DECLARE_ACTION(Idx) \
|
||||
void Action##Idx(void) \
|
||||
{ \
|
||||
static uint32_t DebutMs=millis(); \
|
||||
static boolean Etat=HIGH; \
|
||||
/* Depuis la version 2.0 de la lib <RcSeq>, pour */ \
|
||||
/* des raisons de reactivite, la tempo inter-commande */ \
|
||||
/* doit etre geree dans le sketch utilisateur. */ \
|
||||
if(millis() - DebutMs >= 500UL) \
|
||||
{ \
|
||||
DebutMs=millis(); \
|
||||
digitalWrite(Idx, Etat); \
|
||||
Etat=!Etat; \
|
||||
} \
|
||||
}
|
||||
|
||||
/* Declaration des actions en utilisant la macro DECLARE_ACTION(Idx) avec Idx = le numero de l'action et de la pin (le ##Idx sera remplace automatiquement par la valeur de Idx */
|
||||
DECLARE_ACTION(1)
|
||||
DECLARE_ACTION(2)
|
||||
DECLARE_ACTION(3)
|
||||
DECLARE_ACTION(4)
|
||||
DECLARE_ACTION(5)
|
||||
DECLARE_ACTION(6)
|
||||
DECLARE_ACTION(7)
|
||||
DECLARE_ACTION(8)
|
||||
|
||||
//==============================================================================================
|
||||
void setup()
|
||||
{
|
||||
RcSeq_Init();
|
||||
RcSeq_DeclareSignal(RC_VOIE, BROCHE_SIGNAL_RECEPTEUR_VOIE);
|
||||
RcSeq_DeclareClavierMaison(RC_VOIE, RC_CLAVIER_MAISON(ClavierMaison));
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE, BP1, Action1);pinMode(1,OUTPUT);
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE, BP2, Action2);pinMode(2,OUTPUT);
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE, BP3, Action3);pinMode(3,OUTPUT);
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE, BP4, Action4);pinMode(4,OUTPUT);
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE, BP5, Action5);pinMode(5,OUTPUT);
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE, BP6, Action6);pinMode(6,OUTPUT);
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE, BP7, Action7);pinMode(7,OUTPUT);
|
||||
RcSeq_DeclareCommandeEtActionCourte(RC_VOIE, BP8, Action8);pinMode(8,OUTPUT);
|
||||
}
|
||||
//==============================================================================================
|
||||
void loop()
|
||||
{
|
||||
RcSeq_Rafraichit();
|
||||
}
|
||||
//============================ FIN DU PROGRAMME =================================================
|
||||
|
Reference in New Issue
Block a user