441 lines
15 KiB
C++

/*
_____ ____ __ _ ____ _ _ _ _
| __ \ / __ \ | \ | | / __ \ | | | | | | | |
| |__| | | / \_| | . \ | | / / \ \ | | | | \ \ / /
| _ / | | _ | |\ \| | | |__| | | | | | \ ' /
| | \ \ | \__/ | | | \ ' | | __ | \ \/ / | |
|_| \_\ \____/ |_| \__| |_| |_| \__/ |_| 2013/2014
http://p.loussouarn.free.fr
*******************************************************
* <TinyPinChange> library Demo *
* with display capabilities using *
* <SoftSerial> object as single wire serial interface *
*******************************************************
This "Tiny RC Scope" sketch demonstrates how to use <TinyPinChange> and <SoftSerial> libraries.
"Tiny RC Scope" acts as a simple real time ASCII oscilloscope for displaying one RC Channel in the serial console.
The displayed measurement (in µs) are: pulse width and RC period.
Trick: By connecting Pin#1 to Pin#0, through a 1K resistor, you can measure the RC Signal provided by the built-in RC generator for testing purpose.
Output results are sent to a software serial port. If a real RC signal is connected to Pin0, the trace is displayed in real time in the terminal.
And the great thing is: using a <SoftSerial> object as a bi-directionnal software serial port (half-duplex) on a single pin to communicate with the outside world!
To display the sketch results on a PC (in a Terminal):
1) Build the "Serial One Wire Debug Cable" and plug it to the regular RS232 port as depicted below.
2) Open your favorite Terminal at 57600,n,8,1: HyperTerminal, Teraterm (Windows) or Minicom, GtkTerm (Linux) and CoolTerm (MAC) does the trick.
3) You can also use the Serial Monitor of the arduino IDE: Tools->Serial Port and select your RS232 port (may be an USB virtual port), Rate=57600.
4) To test "Tiny RC Scope", connect Pin1 to Pin0, and look at the Terminal (57600,n,8,1) connected to Pin2 through a debug cable ()
5) The wave form should be displayed in the Terminal,
6) Type - to decrease the pulse width (-10us),
7) Type + to increase the pulse width (+10us),
8) Type m to set the pulse width to its minimum (500us),
9) Type n or N to set the pulse width to its Neutral value (1500us),
10) Type M to set the pulse width to its Maximum (2500us),
11) To measure real RC signals, disconnect the Pin1 from Pin0 and connect a RC receiver output to Pin0,
12) The Terminal will display in real time the pulse width of the connected RC channel.
13) If the channel is not connected, a flat line is displayed.
SERIAL ONE WIRE
DEBUGGING CABLE
_______________ ________________
/ \___/\___/ \
____
.--------. | \
| GND |--------------------------------+---o5 \
| | 47K | | 9o |
| | .--###--' | o4 |
| DEBUG | 4.7K | | 8o |
| TX_RX |-------------------###--+--|<|------o3 | ---> To regular RS232 SubD 9 pins Male of PC or Serial/USB adapter
| PIN | ^ | 1N4148 | 7o |
| | | '-----------o2 |
'--------' | | 6o |
ATtiny85 Single | o1 /
(Digispark) I/O |____/
(pro) SubD 9 pins
Female
*/
#include <TinyPinChange.h>
#include <SoftSerial.h>
#define RC_CHANNEL_PIN 0 /* RC Channel is connected to pin 0 */
#define RC_GEN_PIN 1 /* Pin used as internal RC generator for test purpose */
#define RC_PINS_MSK (_BV(RC_CHANNEL_PIN) | _BV(RC_GEN_PIN))
#define DEBUG_TX_RX_PIN 2
#define DEF_TEST_RC_CH_WIDTH_US 1500 /* This value can be change via the Terminal */
#define TEST_RC_PERIOD_US 20000
#define PULSE_MAX_US 2500
#define PULSE_MIN_US 500
#define STEP_US 10
#define ERR_MARGIN_US 150
#define SERIAL_BAUD_RATE 57600 /* 57600 is the maximum for Receiving commands from the serial port: 1 char -> #200us */
SoftSerial MySerial(DEBUG_TX_RX_PIN, DEBUG_TX_RX_PIN, true); /* Tx/Rx on a single Pin !!! (Pin#2) */
#define ONE_CHAR_TX_TIME_US 200 /* @ 57600 bauds */
enum {PULSE_SRC_INTERNAL, PULSE_SRC_EXTERNAL};
typedef struct {
uint32_t RisingStartUs;
uint32_t RcWidth_us;
uint32_t LastRxPulseMs;
boolean FallingEdgeFound;
}RcChSt_t;
volatile RcChSt_t Ch; /* volatile, since value are used in ISR and in the loop() */
volatile uint32_t RcPeriod_us = TEST_RC_PERIOD_US;
uint32_t TestRcWidth_us = DEF_TEST_RC_CH_WIDTH_US;
/* The different states of the display state machine */
enum {DISP_COMPUTE, DISP_FIRST_LINE, DISP_PREP_SEC_LINE, DISP_SECOND_LINE, DISP_PREP_THIRD_LINE, DISP_THIRD_LINE, DISP_WAIT};
#define LINE_LEN 38
typedef struct{
char Line[LINE_LEN];
uint8_t Idx;
uint8_t State;
uint8_t HighNb;
}DispSt_t;
static DispSt_t Disp;
volatile uint8_t IntRcSynch = 0;
uint8_t VirtualPortIdx;
/*
RC Signal
____ ____
_| |____________________________| |_
<---->
Width_us
<-------------------------------->
Period_us
*/
void setup()
{
TinyPinChange_Init();
MySerial.begin(SERIAL_BAUD_RATE); /* Trick: use a "high" data rate (less time wasted in ISR and for transmitting each character) */
Disp.State = DISP_COMPUTE;
VirtualPortIdx = TinyPinChange_RegisterIsr(RC_CHANNEL_PIN, InterruptFunctionToCall); /* As all pins are on the same port, a single ISR is needed */
pinMode(RC_CHANNEL_PIN, INPUT);
digitalWrite(RC_CHANNEL_PIN, HIGH); /* Enable Pull-up to avoid floating inputs in case of nothing connected to them */
TinyPinChange_EnablePin(RC_CHANNEL_PIN);
Ch.RcWidth_us = 0;
Ch.FallingEdgeFound = 0;
MySerial.txMode();
MySerial.println(F("\n -- Tiny RC Scope V1.0 (C) RC Navy 2014 --\n"));
MySerial.rxMode(); /* Switch to Rx Mode */
pinMode(RC_GEN_PIN, OUTPUT);
}
void loop()
{
uint32_t RcGeneStartUs = micros();
static uint32_t ProcessStartUs = micros();
static uint32_t DisplayStartMs = millis();
uint32_t ProcessDurationUs;
uint32_t HalfRemaingLowUs;
char RxChar;
/* Blink the built-in LED (Built-in RC Signal generator) */
if(IsInternalRcSrc())
{
RcGeneStartUs = micros();
digitalWrite(RC_GEN_PIN, HIGH);
while(micros() - RcGeneStartUs < TestRcWidth_us);
digitalWrite(RC_GEN_PIN, LOW);
}
/********************/
/* Start of process */
/********************/
ProcessStartUs = micros();
DisplayRcMeasurement(5000U);/* Gives 5000 us to display a part of the trace */
/* Get command from single wire SoftSerial (to tune the built-in generator) */
if(MySerial.available() > 0)
{
RxChar = MySerial.read();MySerial.txMode();MySerial.println("");MySerial.rxMode(); /* Carriage return after the echo */
switch(RxChar)
{
case '-': /* Decrease Built-in RC Pulse */
if((TestRcWidth_us - STEP_US) >= PULSE_MIN_US)
{
TestRcWidth_us -= STEP_US;
}
break;
case '+': /* Increase Built-in RC Pulse */
if(TestRcWidth_us + STEP_US <= PULSE_MAX_US)
{
TestRcWidth_us += STEP_US;
}
break;
case 'm': /* Set Built-in RC Pulse o min value: 500 */
TestRcWidth_us = PULSE_MIN_US;
break;
case 'N': /* Set Built-in RC Pulse to Neutral: 1500 */
case 'n':
TestRcWidth_us = DEF_TEST_RC_CH_WIDTH_US;
break;
case 'M': /* Set Built-in RC Pulse to Max value: 2500 */
TestRcWidth_us = PULSE_MAX_US;
break;
default:
/* Ignore */
break;
}
}
/********************/
/* End of process */
/********************/
ProcessDurationUs = micros() - ProcessStartUs; //Compute how many us took the previous instructions
if(IsInternalRcSrc())
{
HalfRemaingLowUs = TEST_RC_PERIOD_US - (ProcessDurationUs + TestRcWidth_us + 100UL);
RcGeneStartUs = micros();
while((micros() - RcGeneStartUs) < HalfRemaingLowUs);
}
}
/*
RC Signal
____ ____
_| |____________________________| |_
<---->
Width_us
<-------------------------------->
Period_us
<-------------------->
Display is processed here
Explanation: the display of the trace is performed just after the falling edge of the RC pulse
As the duration between 2 pulses is too short to display the full trace, the trace is displayed part by part.
A full trace is composed of around 100 characters:
At 57600 bauds, one character takes (1/57600) * 10 = 174 us. As there are some overhead, it is closer than 200us.
So, the full trace takes 100 x 200 = 20000 us = 20 ms. It's impossible to display the full trace between 2 consecutive pulses.
DisplayRcMeasurement() function is the very tricky part of this sketch: it has as argument an amount of time and exits before
it exceeds it. A state machine is used to memorize where the display was arrived.
*/
uint8_t DisplayRcMeasurement(uint16_t FreetimeUs)
{
static uint32_t LocalRcWidth_us;
static uint32_t LocalRcPeriod_us;
static uint32_t StartWaitMs;
char *Ptr;
uint32_t ProcessStart_us;
uint32_t Elapsed_us;
uint8_t StartIdx, Idx;
uint8_t Ret = 0;
switch(Disp.State)
{
case DISP_COMPUTE:
DispCompute:
if(Ch.FallingEdgeFound)
{
DispComputeNoSignal:
ProcessStart_us = micros();
Ch.FallingEdgeFound = 0;
noInterrupts(); /* Mandatory since RcWidth_us and RcPeriod_us are 32 bits */
LocalRcWidth_us = Ch.RcWidth_us;
LocalRcPeriod_us = RcPeriod_us;
interrupts();
if(LocalRcWidth_us < (PULSE_MIN_US - ERR_MARGIN_US) || LocalRcWidth_us > (PULSE_MAX_US + ERR_MARGIN_US)) LocalRcWidth_us = 0; /* Out of Range */
Disp.HighNb = (LocalRcWidth_us + 50UL) / 100;
strcpy_P(Disp.Line, PSTR("Ch(P0)__"));
if(LocalRcWidth_us)
{
Ptr = Disp.Line + 8;
for(Idx = 0; Idx < Disp.HighNb; Idx++) *Ptr++='_';*Ptr++='\n';*Ptr=0;
}
else Disp.Line[6] = 0;
Elapsed_us = micros() - ProcessStart_us;
FreetimeUs -= (uint16_t)Elapsed_us;
Disp.Idx=0;
Disp.State = DISP_FIRST_LINE;
if(FreetimeUs >= ONE_CHAR_TX_TIME_US)
{
goto DispFirstLine;
}
}
else
{
if(millis() - StartWaitMs >= 1000UL)
{
LocalRcWidth_us = 0;
goto DispComputeNoSignal;
}
}
break;
case DISP_PREP_SEC_LINE:
DispPrepSecLine:
/* Prepare second line */
ProcessStart_us = micros();
if(LocalRcWidth_us)
{
strcpy_P(Disp.Line, PSTR("_____/"));
for(Idx = 0; Idx < (2 + Disp.HighNb); Idx++) Disp.Line[6 + Idx] = ' ';
itoa(LocalRcWidth_us, Disp.Line + 6, 10);StartIdx = 9; if(LocalRcWidth_us >= 1000) StartIdx++;Disp.Line[StartIdx++] = 'u';Disp.Line[StartIdx++] = 's';
StartIdx = 6 + 2 + Disp.HighNb;Disp.Line[StartIdx++] = '\\';
}
else StartIdx = 0;
for(Idx = 0; (StartIdx + Idx ) < (LINE_LEN - 2); Idx++) Disp.Line[StartIdx + Idx] = '_';Disp.Line[StartIdx + Idx] = '\n';Disp.Line[++StartIdx + Idx] = 0;
Elapsed_us = micros() - ProcessStart_us;
FreetimeUs -= (uint16_t)Elapsed_us;
Disp.Idx=0;
Disp.State = DISP_SECOND_LINE;
if(FreetimeUs >= ONE_CHAR_TX_TIME_US)
{
goto DispSecondLine;
}
break;
case DISP_PREP_THIRD_LINE:
DispPrepThirdLine:
/* Prepare third line */
ProcessStart_us = micros();
strcpy_P(Disp.Line, PSTR(" RC Period: "));
if(LocalRcWidth_us)
{
itoa(LocalRcPeriod_us, Disp.Line + 20, 10);
strcat_P(Disp.Line, PSTR("us"));
}
else strcat_P(Disp.Line, PSTR("???"));
Elapsed_us = micros() - ProcessStart_us;
FreetimeUs -= (uint16_t)Elapsed_us;
Disp.Idx=0;
Disp.State = DISP_THIRD_LINE;
if(FreetimeUs >= ONE_CHAR_TX_TIME_US)
{
goto DispThirdLine;
}
break;
case DISP_FIRST_LINE:
case DISP_SECOND_LINE:
case DISP_THIRD_LINE:
DispFirstLine:
DispSecondLine:
DispThirdLine:
ProcessStart_us = micros();
MySerial.txMode();
while(1)
{
if(Disp.Line[Disp.Idx])
{
MySerial.print(Disp.Line[Disp.Idx++]);
if (micros() - ProcessStart_us >= (FreetimeUs - ONE_CHAR_TX_TIME_US))
{
MySerial.rxMode();
break; /* exit while(1) and stay in the current state */
}
}
else
{
switch(Disp.State)
{
case DISP_FIRST_LINE:
/* First line is fully displayed */
Disp.State = DISP_PREP_SEC_LINE;
if(FreetimeUs - Elapsed_us >= 200)
{
FreetimeUs -= (uint16_t)Elapsed_us;
goto DispPrepSecLine;
}
else
{
/* Not enough time: just change state */
MySerial.rxMode();
}
break;
case DISP_SECOND_LINE:
/* Second line is fully displayed */
Disp.State = DISP_PREP_THIRD_LINE;
if(FreetimeUs - Elapsed_us >= 200)
{
FreetimeUs -= (uint16_t)Elapsed_us;
goto DispPrepThirdLine;
}
else
{
/* Not enough time: just change state */
MySerial.rxMode();
}
break;
case DISP_THIRD_LINE:
/* Third line is fully displayed */
MySerial.print('\n');
StartWaitMs = millis();
Disp.State = DISP_WAIT;
MySerial.rxMode();
break;
}
break; /* exit while(1) */
}
}
break;
case DISP_WAIT:
if(millis() - StartWaitMs >= 500UL) Disp.State = DISP_COMPUTE; /* Give some time to enter commands via the terminal (in internal source mode) */
else Ch.FallingEdgeFound = false;
break;
}
return(Ret);
}
/* The following function checks if the received signal is the image of the one of the built-in RC generator */
uint8_t IsInternalRcSrc()
{
uint8_t Ret;
static uint32_t SampleStartMs = millis();
if(millis() - Ch.LastRxPulseMs >= 300UL) IntRcSynch = 100; /* Kick off Internal RC generator */
Ret = (IntRcSynch >= 100);
if(millis() - SampleStartMs >= 10UL)
{
SampleStartMs = millis();
IntRcSynch = 99;
}
return(Ret);
}
/* Function called in interruption in case of change on RC pins: pulse width and RC period measurement */
void InterruptFunctionToCall(void)
{
if(TinyPinChange_RisingEdge(VirtualPortIdx, RC_CHANNEL_PIN)) /* Check for RC Channel rising edge */
{
RcPeriod_us = micros() - Ch.RisingStartUs;
Ch.RisingStartUs = micros();
}
else
{
Ch.RcWidth_us = micros() - Ch.RisingStartUs;
Ch.FallingEdgeFound = true;
Ch.LastRxPulseMs = millis();
if(!(PINB & RC_PINS_MSK)) /* Check if RC_CHANNEL_PIN and RC_GEN_PIN are both to 0 */
{
if(IntRcSynch < 100) IntRcSynch++; /* if IntRcSynch reaches 100, it means the RC source is internal (synchronized) */
}else IntRcSynch = 0; /* Not synchronized */
}
}