125 lines
3.9 KiB
C++

#include "LPD8806.h"
// Arduino library to control LPD8806-based RGB LED Strips
// (c) Adafruit industries
// MIT license
/*****************************************************************************/
// Constructor for use with arbitrary clock/data pins:
LPD8806::LPD8806(uint16_t n, uint8_t dpin, uint8_t cpin) {
pixels = NULL;
begun = false;
updateLength(n);
updatePins(dpin, cpin);
}
// Activate hard/soft SPI as appropriate:
void LPD8806::begin(void) {
startBitbang();
begun = true;
}
// Change pin assignments post-constructor, using arbitrary pins:
void LPD8806::updatePins(uint8_t dpin, uint8_t cpin) {
datapin = dpin;
clkpin = cpin;
clkport = portOutputRegister(digitalPinToPort(cpin));
clkpinmask = digitalPinToBitMask(cpin);
dataport = portOutputRegister(digitalPinToPort(dpin));
datapinmask = digitalPinToBitMask(dpin);
if(begun == true) { // If begin() was previously invoked...
startBitbang(); // Regardless, now enable 'soft' SPI outputs
} // Otherwise, pins are not set to outputs until begin() is called.
// Note: any prior clock/data pin directions are left as-is and are
// NOT restored as inputs!
hardwareSPI = false;
}
// Enable software SPI pins and issue initial latch:
void LPD8806::startBitbang() {
pinMode(datapin, OUTPUT);
pinMode(clkpin , OUTPUT);
*dataport &= ~datapinmask; // Data is held low throughout (latch = 0)
for(uint8_t i = 8; i>0; i--) {
*clkport |= clkpinmask;
*clkport &= ~clkpinmask;
}
}
// Change strip length (see notes with empty constructor, above):
void LPD8806::updateLength(uint16_t n) {
if(pixels != NULL) free(pixels); // Free existing data (if any)
numLEDs = n;
n *= 3; // 3 bytes per pixel
if(NULL != (pixels = (uint8_t *)malloc(n + 1))) { // Alloc new data
memset(pixels, 0x80, n); // Init to RGB 'off' state
pixels[n] = 0; // Last byte is always zero for latch
} else numLEDs = 0; // else malloc failed
// 'begun' state does not change -- pins retain prior modes
}
uint16_t LPD8806::numPixels(void) {
return numLEDs;
}
// This is how data is pushed to the strip. Unfortunately, the company
// that makes the chip didnt release the protocol document or you need
// to sign an NDA or something stupid like that, but we reverse engineered
// this from a strip controller and it seems to work very nicely!
void LPD8806::show(void) {
uint16_t i, n3 = numLEDs * 3 + 1; // 3 bytes per LED + 1 for latch
// write 24 bits per pixel
for (i=0; i<n3; i++ ) {
for (uint8_t bit=0x80; bit; bit >>= 1) {
if(pixels[i] & bit) *dataport |= datapinmask;
else *dataport &= ~datapinmask;
*clkport |= clkpinmask;
*clkport &= ~clkpinmask;
}
}
}
// Convert separate R,G,B into combined 32-bit GRB color:
uint32_t LPD8806::Color(byte r, byte g, byte b) {
return 0x808080 | ((uint32_t)g << 16) | ((uint32_t)r << 8) | (uint32_t)b;
}
// Set pixel color from separate 7-bit R, G, B components:
void LPD8806::setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b) {
if(n < numLEDs) { // Arrays are 0-indexed, thus NOT '<='
uint8_t *p = &pixels[n * 3];
*p++ = g | 0x80; // LPD8806 color order is GRB,
*p++ = r | 0x80; // not the more common RGB,
*p++ = b | 0x80; // so the order here is intentional; don't "fix"
}
}
// Set pixel color from 'packed' 32-bit RGB value:
void LPD8806::setPixelColor(uint16_t n, uint32_t c) {
if(n < numLEDs) { // Arrays are 0-indexed, thus NOT '<='
uint8_t *p = &pixels[n * 3];
*p++ = (c >> 16) | 0x80;
*p++ = (c >> 8) | 0x80;
*p++ = c | 0x80;
}
}
// Query color from previously-set pixel (returns packed 32-bit GRB value)
uint32_t LPD8806::getPixelColor(uint16_t n) {
if(n < numLEDs) {
uint16_t ofs = n * 3;
return ((uint32_t)((uint32_t)pixels[ofs ] << 16) |
(uint32_t)((uint32_t)pixels[ofs + 1] << 8) |
(uint32_t)pixels[ofs + 2]) & 0x7f7f7f;
}
return 0; // Pixel # is out of bounds
}