Initial import of support files for all Digistump boards - Digispark, Pro, DigiX - including libraries, examples, tools, and other support files for the Arduino IDE

This commit is contained in:
Erik Tylek Kettenburg
2014-12-19 08:45:50 -08:00
parent 97abdbf157
commit 7e7473a2d6
3567 changed files with 722870 additions and 0 deletions

View File

@@ -0,0 +1,227 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example for Getting Started with nRF24L01+ radios.
*
* This is an example of how to use the RF24 class. Write this sketch to two
* different nodes. Put one of the nodes into 'transmit' mode by connecting
* with the serial monitor and sending a 'T'. The ping node sends the current
* time to the pong node, which responds by sending the value back. The ping
* node can then see how long the whole cycle took.
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
//
// Topology
//
// Radio pipe addresses for the 2 nodes to communicate.
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing.
//
// The various roles supported by this sketch
typedef enum { role_ping_out = 1, role_pong_back } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
// The role of the current running sketch
role_e role = role_pong_back;
void setup(void)
{
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/GettingStarted/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
printf("*** PRESS 'T' to begin transmitting to the other node\n\r");
//
// Setup and configure rf radio
//
radio.begin();
// optionally, increase the delay between retries & # of retries
radio.setRetries(15,15);
// optionally, reduce the payload size. seems to
// improve reliability
//radio.setPayloadSize(8);
//
// Open pipes to other nodes for communication
//
// This simple sketch opens two pipes for these two nodes to communicate
// back and forth.
// Open 'our' pipe for writing
// Open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
//if ( role == role_ping_out )
{
//radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
}
//else
{
//radio.openWritingPipe(pipes[1]);
//radio.openReadingPipe(1,pipes[0]);
}
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
}
void loop(void)
{
//
// Ping out role. Repeatedly send the current time
//
if (role == role_ping_out)
{
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
bool ok = radio.write( &time, sizeof(unsigned long) );
if (ok)
printf("ok...");
else
printf("failed.\n\r");
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout (250ms)
unsigned long started_waiting_at = millis();
bool timeout = false;
while ( ! radio.available() && ! timeout )
if (millis() - started_waiting_at > 200 )
timeout = true;
// Describe the results
if ( timeout )
{
printf("Failed, response timed out.\n\r");
}
else
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
}
// Try again 1s later
delay(1000);
}
//
// Pong back role. Receive each packet, dump it out, and send it back
//
if ( role == role_pong_back )
{
// if there is data ready
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
unsigned long got_time;
bool done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got payload %lu...",got_time);
// Delay just a little bit to let the other unit
// make the transition to receiver
delay(20);
}
// First, stop listening so we can talk
radio.stopListening();
// Send the final one back.
radio.write( &got_time, sizeof(unsigned long) );
printf("Sent response.\n\r");
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
//
// Change roles
//
if ( Serial.available() )
{
char c = toupper(Serial.read());
if ( c == 'T' && role == role_pong_back )
{
printf("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK\n\r");
// Become the primary transmitter (ping out)
role = role_ping_out;
radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
}
else if ( c == 'R' && role == role_ping_out )
{
printf("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK\n\r");
// Become the primary receiver (pong back)
role = role_pong_back;
radio.openWritingPipe(pipes[1]);
radio.openReadingPipe(1,pipes[0]);
}
}
}
// vim:cin:ai:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,210 @@
# (1) Project Information
PROJECT_LIBS = SPI RF24 ;
# (2) Board Information
UPLOAD_PROTOCOL ?= arduino ;
UPLOAD_SPEED ?= 57600 ;
MCU ?= atmega328p ;
F_CPU ?= 16000000 ;
CORE ?= arduino ;
VARIANT ?= standard ;
ARDUINO_VERSION ?= 100 ;
# (3) USB Ports
PORTS = p4 p6 p9 u0 u1 u2 ;
PORT_p6 = /dev/tty.usbserial-A600eHIs ;
PORT_p4 = /dev/tty.usbserial-A40081RP ;
PORT_p9 = /dev/tty.usbserial-A9007LmI ;
PORT_u0 = /dev/ttyUSB0 ;
PORT_u1 = /dev/ttyUSB1 ;
PORT_u2 = /dev/ttyUSB2 ;
# (4) Location of AVR tools
#
# This configuration assumes using avr-tools that were obtained separate from the Arduino
# distribution.
if $(OS) = MACOSX
{
AVR_BIN = /usr/local/avrtools/bin ;
AVR_ETC = /usr/local/avrtools/etc ;
AVR_INCLUDE = /usr/local/avrtools/include ;
}
else
{
AVR_BIN ?= /usr/bin ;
AVR_INCLUDE ?= /usr/lib/avr/include ;
AVR_ETC = /etc ;
}
# (5) Directories where Arduino core and libraries are located
ARDUINO_DIR ?= /opt/Arduino ;
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/$(CORE) $(ARDUINO_DIR)/hardware/arduino/variants/$(VARIANT) ;
ARDUINO_LIB = $(ARDUINO_DIR)/libraries ;
SKETCH_LIB = $(HOME)/Source/Arduino/libraries ;
#
# --------------------------------------------------
# Below this line usually never needs to be modified
#
# Tool locations
CC = $(AVR_BIN)/avr-gcc ;
C++ = $(AVR_BIN)/avr-g++ ;
LINK = $(AVR_BIN)/avr-gcc ;
OBJCOPY = $(AVR_BIN)/avr-objcopy ;
AVRDUDE = $(AVR_BIN)/avrdude ;
# Flags
DEFINES += F_CPU=$(F_CPU)L ARDUINO=$(ARDUINO_VERSION) VERSION_H ;
OPTIM = -Os ;
CCFLAGS = -Wall -Wextra -mmcu=$(MCU) -ffunction-sections -fdata-sections ;
C++FLAGS = $(CCFLAGS) -fno-exceptions -fno-strict-aliasing ;
LINKFLAGS = $(OPTIM) -lm -Wl,--gc-sections -mmcu=$(MCU) ;
AVRDUDEFLAGS = -V -F -D -C $(AVR_ETC)/avrdude.conf -p $(MCU) -c $(UPLOAD_PROTOCOL) -b $(UPLOAD_SPEED) ;
# Search everywhere for headers
HDRS = $(PWD) $(AVR_INCLUDE) $(ARDUINO_CORE) $(ARDUINO_LIB)/$(PROJECT_LIBS) $(ARDUINO_LIB)/$(PROJECT_LIBS)/utility $(SKETCH_LIB)/$(PROJECT_LIBS) ;
# Output locations
LOCATE_TARGET = $(F_CPU) ;
LOCATE_SOURCE = $(F_CPU) ;
#
# Custom rules
#
rule GitVersion
{
Always $(<) ;
Depends all : $(<) ;
}
actions GitVersion
{
echo "const char program_version[] = \"\\" > $(<)
git log -1 --pretty=format:%h >> $(<)
echo "\";" >> $(<)
}
GitVersion version.h ;
rule Pde
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_SOURCE) ;
Clean clean : $(<) ;
}
if ( $(ARDUINO_VERSION) < 100 )
{
ARDUINO_H = WProgram.h ;
}
else
{
ARDUINO_H = Arduino.h ;
}
actions Pde
{
echo "#include <$(ARDUINO_H)>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule C++Pde
{
local _CPP = $(>:B).cpp ;
Pde $(_CPP) : $(>) ;
C++ $(<) : $(_CPP) ;
}
rule UserObject
{
switch $(>:S)
{
case .ino : C++Pde $(<) : $(>) ;
case .pde : C++Pde $(<) : $(>) ;
}
}
rule Objects
{
local _i ;
for _i in [ FGristFiles $(<) ]
{
local _b = $(_i:B)$(SUFOBJ) ;
local _o = $(_b:G=$(SOURCE_GRIST:E)) ;
Object $(_o) : $(_i) ;
Depends obj : $(_o) ;
}
}
rule Main
{
MainFromObjects $(<) : $(>:B)$(SUFOBJ) ;
Objects $(>) ;
}
rule Hex
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_TARGET) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions Hex
{
$(OBJCOPY) -O ihex -R .eeprom $(>) $(<)
}
rule Upload
{
Depends $(1) : $(2) ;
Depends $(2) : $(3) ;
NotFile $(1) ;
Always $(1) ;
Always $(2) ;
UploadAction $(2) : $(3) ;
}
actions UploadAction
{
$(AVRDUDE) $(AVRDUDEFLAGS) -P $(<) $(AVRDUDE_WRITE_FLASH) -U flash:w:$(>):i
}
#
# Targets
#
# Grab everything from the core directory
CORE_MODULES = [ GLOB $(ARDUINO_CORE) : *.c *.cpp ] ;
# Grab everything from libraries. To avoid this "grab everything" behaviour, you
# can specify specific modules to pick up in PROJECT_MODULES
LIB_MODULES = [ GLOB $(ARDUINO_LIB)/$(PROJECT_LIBS) $(ARDUINO_LIB)/$(PROJECT_LIBS)/utility $(SKETCH_LIB)/$(PROJECT_LIBS) : *.cpp *.c ] ;
# Grab everything from the current dir
PROJECT_MODULES += [ GLOB $(PWD) : *.c *.cpp *.pde *.ino ] ;
# Main output executable
MAIN = $(PWD:B).elf ;
Main $(MAIN) : $(CORE_MODULES) $(LIB_MODULES) $(PROJECT_MODULES) ;
Hex $(MAIN:B).hex : $(MAIN) ;
# Upload targets
for _p in $(PORTS)
{
Upload $(_p) : $(PORT_$(_p)) : $(MAIN:B).hex ;
}

View File

@@ -0,0 +1,37 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#ifdef ARDUINO
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#else
#error This example is only for use on Arduino.
#endif // ARDUINO
#endif // __PRINTF_H__

View File

@@ -0,0 +1,41 @@
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
RF24 radio(9,12);
const int LED = 1;
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
// The various roles supported by this sketch
typedef enum { role_ping_out = 1, role_pong_back } role_e;
// The role of the current running sketch
role_e role = role_pong_back;
void setup() {
// put your setup code here, to run once:
pinMode(LED, OUTPUT);
digitalWrite(LED, LOW);
radio.begin();
radio.setRetries(15, 15);
radio.openReadingPipe(1, pipes[1]);
radio.startListening();
digitalWrite(LED, HIGH);
}
void loop() {
if(radio.available()) {
unsigned long value;
bool done = false;
while(!done) {
done = radio.read(&value, sizeof(unsigned long));
delay(20);
}
digitalWrite(LED, LOW);
delay(1000);
digitalWrite(LED, HIGH);
}
}

View File

@@ -0,0 +1,36 @@
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
RF24 radio(9,12);
const int LED = 1;
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
// The various roles supported by this sketch
typedef enum { role_ping_out = 1, role_pong_back } role_e;
// The role of the current running sketch
role_e role = role_pong_back;
void setup() {
// put your setup code here, to run once:
pinMode(LED, OUTPUT);
digitalWrite(LED, LOW);
radio.begin();
radio.setRetries(15, 15);
radio.openWritingPipe(pipes[1]);
digitalWrite(LED, HIGH);
}
void loop() {
unsigned long value = 2000;
bool ok = radio.write(&value, sizeof(unsigned long));
if(ok) {
digitalWrite(LED, LOW);
delay(2000);
digitalWrite(LED, HIGH);
}
}

View File

@@ -0,0 +1,206 @@
PROJECT_NAME = $(PWD:B) ;
PROJECT_DIR = . ;
PROJECT_LIBS = SPI RF24 ;
OUT_DIR = ojam ;
F_CPU = 16000000 ;
MCU = atmega328p ;
PORTS = /dev/tty.usbserial-A600eHIs /dev/tty.usbserial-A40081RP /dev/tty.usbserial-A9007LmI ;
UPLOAD_RATE = 57600 ;
AVRDUDE_PROTOCOL = stk500v1 ;
COM = 33 ;
# Host-specific overrides for locations
if $(OS) = MACOSX
{
ARDUINO_VERSION = 22 ;
OLD_DIR = /opt/arduino-0021 ;
AVR_TOOLS_PATH = $(OLD_DIR)/hardware/tools/avr/bin ;
AVRDUDECONFIG_PATH = $(OLD_DIR)/hardware/tools/avr/etc ;
ARDUINO_DIR = /opt/Arduino ;
ARDUINO_AVR = /usr/lib/avr/include ;
}
# Where is everything?
ARDUINO_VERSION ?= 22 ;
AVR_TOOLS_PATH ?= /usr/bin ;
ARDUINO_DIR ?= /opt/arduino-00$(ARDUINO_VERSION) ;
ARDUINO_AVR ?= $(ARDUINO_DIR)/hardware/tools/avr/avr/include/avr ;
AVRDUDECONFIG_PATH ?= $(ARDUINO_DIR)/hardware/tools ;
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/arduino ;
ARDUINO_LIB = $(ARDUINO_DIR)/libraries ;
SKETCH_LIB = $(HOME)/Source/Arduino/libraries ;
AVR_CC = $(AVR_TOOLS_PATH)/avr-gcc ;
AVR_CXX = $(AVR_TOOLS_PATH)/avr-g++ ;
AVR_LD = $(AVR_TOOLS_PATH)/avr-gcc ;
AVR_OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy ;
AVRDUDE = $(AVR_TOOLS_PATH)/avrdude ;
DEFINES = F_CPU=$(F_CPU)L ARDUINO=$(ARDUINO_VERSION) VERSION_H ;
CTUNING = -ffunction-sections -fdata-sections ;
CXXTUNING = -fno-exceptions -fno-strict-aliasing ;
CFLAGS = -Os -Wall -Wextra -mmcu=$(MCU) $(CTUNING) ;
CXXFLAGS = $(CFLAGS) $(CXXTUNING) ;
LDFLAGS = -Os -lm -Wl,--gc-sections -mmcu=atmega328p ;
# Search everywhere for headers
HDRS = $(PROJECT_DIR) $(ARDUINO_AVR) $(ARDUINO_CORE) [ GLOB $(ARDUINO_LIB) $(SKETCH_LIB) : [^.]* ] ;
# Grab everything from the core directory
CORE_MODULES = [ GLOB $(ARDUINO_CORE) : *.c *.cpp ] ;
# Grab everything from libraries. To avoid this "grab everything" behaviour, you
# can specify specific modules to pick up in PROJECT_MODULES
LIB_MODULES = [ GLOB $(ARDUINO_LIB)/$(PROJECT_LIBS) $(SKETCH_LIB)/$(PROJECT_LIBS) : *.cpp ] ;
# In addition to explicitly-specified program modules, pick up anything from the current
# dir.
PROJECT_MODULES += [ GLOB $(PROJECT_DIR) : *.c *.cpp *.pde ] ;
# Shortcut for the out files
OUT = $(OUT_DIR)/$(PROJECT_NAME) ;
# AvrDude setup
AVRDUDE_FLAGS = -V -F -D -C $(AVRDUDECONFIG_PATH)/avrdude.conf -p $(MCU) -c $(AVRDUDE_PROTOCOL) -b $(UPLOAD_RATE) ;
rule GitVersion
{
Always $(<) ;
Depends all : $(<) ;
}
actions GitVersion
{
echo "const char program_version[] = \"\\" > $(<)
git log -1 --pretty=format:%h >> $(<)
echo "\";" >> $(<)
}
GitVersion version.h ;
rule AvrCc
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
CCHDRS on $(<) = [ on $(<) FIncludes $(HDRS) ] ;
CCDEFS on $(<) = [ on $(<) FDefines $(DEFINES) ] ;
}
actions AvrCc
{
$(AVR_CC) -c -o $(<) $(CCHDRS) $(CCDEFS) $(CFLAGS) $(>)
}
rule AvrC++
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
CCHDRS on $(<) = [ on $(<) FIncludes $(HDRS) ] ;
CCDEFS on $(<) = [ on $(<) FDefines $(DEFINES) ] ;
}
actions AvrC++
{
$(AVR_CXX) -c -o $(<) $(CCHDRS) $(CCDEFS) $(CXXFLAGS) $(>)
}
rule Pde
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
}
actions Pde
{
echo "#include <WProgram.h>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule AvrPde
{
local _CPP = $(OUT_DIR)/$(_I:B).cpp ;
Pde $(_CPP) : $(>) ;
AvrC++ $(<) : $(_CPP) ;
}
rule AvrObject
{
switch $(>:S)
{
case .c : AvrCc $(<) : $(>) ;
case .cpp : AvrC++ $(<) : $(>) ;
case .pde : AvrPde $(<) : $(>) ;
}
}
rule AvrObjects
{
for _I in $(<)
{
AvrObject $(OUT_DIR)/$(_I:B).o : $(_I) ;
}
}
rule AvrMainFromObjects
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
MkDir $(<:D) ;
Depends all : $(<) ;
Clean clean : $(<) ;
}
actions AvrMainFromObjects
{
$(AVR_LD) $(LDFLAGS) -o $(<) $(>)
}
rule AvrMain
{
AvrMainFromObjects $(<) : $(OUT_DIR)/$(>:B).o ;
AvrObjects $(>) ;
}
rule AvrHex
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions AvrHex
{
$(AVR_OBJCOPY) -O ihex -R .eeprom $(>) $(<)
}
rule AvrUpload
{
Depends $(1) : $(2) ;
Depends $(2) : $(3) ;
NotFile $(1) ;
Always $(1) ;
Always $(2) ;
AvrUploadAction $(2) : $(3) ;
}
actions AvrUploadAction
{
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(<) $(AVRDUDE_WRITE_FLASH) -U flash:w:$(>):i
}
AvrMain $(OUT).elf : $(CORE_MODULES) $(LIB_MODULES) $(PROJECT_MODULES) ;
AvrHex $(OUT).hex : $(OUT).elf ;
AvrUpload p6 : /dev/tty.usbserial-A600eHIs : $(OUT).hex ;
AvrUpload p4 : /dev/tty.usbserial-A40081RP : $(OUT).hex ;
AvrUpload p9 : /dev/tty.usbserial-A9007LmI : $(OUT).hex ;

View File

@@ -0,0 +1,255 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example LED Remote
*
* This is an example of how to use the RF24 class to control a remote
* bank of LED's using buttons on a remote control.
*
* On the 'remote', connect any number of buttons or switches from
* an arduino pin to ground. Update 'button_pins' to reflect the
* pins used.
*
* On the 'led' board, connect the same number of LED's from an
* arduino pin to a resistor to ground. Update 'led_pins' to reflect
* the pins used. Also connect a separate pin to ground and change
* the 'role_pin'. This tells the sketch it's running on the LED board.
*
* Every time the buttons change on the remote, the entire state of
* buttons is send to the led board, which displays the state.
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
// sets the role of this unit in hardware. Connect to GND to be the 'led' board receiver
// Leave open to be the 'remote' transmitter
const int role_pin = A4;
// Pins on the remote for buttons
const uint8_t button_pins[] = { 2,3,4,5,6,7 };
const uint8_t num_button_pins = sizeof(button_pins);
// Pins on the LED board for LED's
const uint8_t led_pins[] = { 2,3,4,5,6,7 };
const uint8_t num_led_pins = sizeof(led_pins);
//
// Topology
//
// Single radio pipe address for the 2 nodes to communicate.
const uint64_t pipe = 0xE8E8F0F0E1LL;
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes in this
// system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the role_pin
//
// The various roles supported by this sketch
typedef enum { role_remote = 1, role_led } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Remote", "LED Board"};
// The role of the current running sketch
role_e role;
//
// Payload
//
uint8_t button_states[num_button_pins];
uint8_t led_states[num_led_pins];
//
// Setup
//
void setup(void)
{
//
// Role
//
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role
if ( digitalRead(role_pin) )
role = role_remote;
else
role = role_led;
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/led_remote/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
//
// Setup and configure rf radio
//
radio.begin();
//
// Open pipes to other nodes for communication
//
// This simple sketch opens a single pipes for these two nodes to communicate
// back and forth. One listens on it, the other talks to it.
if ( role == role_remote )
{
radio.openWritingPipe(pipe);
}
else
{
radio.openReadingPipe(1,pipe);
}
//
// Start listening
//
if ( role == role_led )
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
//
// Set up buttons / LED's
//
// Set pull-up resistors for all buttons
if ( role == role_remote )
{
int i = num_button_pins;
while(i--)
{
pinMode(button_pins[i],INPUT);
digitalWrite(button_pins[i],HIGH);
}
}
// Turn LED's ON until we start getting keys
if ( role == role_led )
{
int i = num_led_pins;
while(i--)
{
pinMode(led_pins[i],OUTPUT);
led_states[i] = HIGH;
digitalWrite(led_pins[i],led_states[i]);
}
}
}
//
// Loop
//
void loop(void)
{
//
// Remote role. If the state of any button has changed, send the whole state of
// all buttons.
//
if ( role == role_remote )
{
// Get the current state of buttons, and
// Test if the current state is different from the last state we sent
int i = num_button_pins;
bool different = false;
while(i--)
{
uint8_t state = ! digitalRead(button_pins[i]);
if ( state != button_states[i] )
{
different = true;
button_states[i] = state;
}
}
// Send the state of the buttons to the LED board
if ( different )
{
printf("Now sending...");
bool ok = radio.write( button_states, num_button_pins );
if (ok)
printf("ok\n\r");
else
printf("failed\n\r");
}
// Try again in a short while
delay(20);
}
//
// LED role. Receive the state of all buttons, and reflect that in the LEDs
//
if ( role == role_led )
{
// if there is data ready
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
bool done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( button_states, num_button_pins );
// Spew it
printf("Got buttons\n\r");
// For each button, if the button now on, then toggle the LED
int i = num_led_pins;
while(i--)
{
if ( button_states[i] )
{
led_states[i] ^= HIGH;
digitalWrite(led_pins[i],led_states[i]);
}
}
}
}
}
}
// vim:ai:cin:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,37 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#ifdef ARDUINO
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#else
#error This example is only for use on Arduino.
#endif // ARDUINO
#endif // __PRINTF_H__

View File

@@ -0,0 +1,219 @@
# (1) Project Information
PROJECT_LIBS = RF24 SPI ;
PROJECT_DIRS = $(PWD) ;
# (2) Board Information
UPLOAD_PROTOCOL ?= stk500v1 ;
UPLOAD_SPEED ?= 115200 ;
MCU ?= atmega328p ;
F_CPU ?= 16000000 ;
CORE ?= arduino ;
VARIANT ?= standard ;
ARDUINO_VERSION ?= 100 ;
# (3) USB Ports
PORTS = p4 p6 p9 u0 u1 u2 ;
PORT_p6 = /dev/tty.usbserial-A600eHIs ;
PORT_p4 = /dev/tty.usbserial-A40081RP ;
PORT_p9 = /dev/tty.usbserial-A9007LmI ;
PORT_u0 = /dev/ttyUSB0 ;
PORT_u1 = /dev/ttyUSB1 ;
PORT_u2 = /dev/ttyUSB2 ;
# (4) Location of AVR tools
#
# This configuration assumes using avr-tools that were obtained separate from the Arduino
# distribution.
if $(OS) = MACOSX
{
AVR_BIN = /usr/local/avrtools/bin ;
AVR_ETC = /usr/local/avrtools/etc ;
AVR_INCLUDE = /usr/local/avrtools/include ;
}
else
{
AVR_BIN = /usr/bin ;
AVR_INCLUDE = /usr/lib/avr/include ;
AVR_ETC = /etc ;
}
# (5) Directories where Arduino core and libraries are located
ARDUINO_DIR ?= /opt/Arduino ;
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/$(CORE) $(ARDUINO_DIR)/hardware/arduino/variants/$(VARIANT) ;
ARDUINO_LIB = $(ARDUINO_DIR)/libraries ;
SKETCH_LIB = $(HOME)/Source/Arduino/libraries ;
#
# --------------------------------------------------
# Below this line usually never needs to be modified
#
# Tool locations
CC = $(AVR_BIN)/avr-gcc ;
C++ = $(AVR_BIN)/avr-g++ ;
LINK = $(AVR_BIN)/avr-gcc ;
AR = $(AVR_BIN)/avr-ar rcs ;
RANLIB = ;
OBJCOPY = $(AVR_BIN)/avr-objcopy ;
AVRDUDE = $(AVR_BIN)/avrdude ;
# Flags
DEFINES += F_CPU=$(F_CPU)L ARDUINO=$(ARDUINO_VERSION) VERSION_H ;
OPTIM = -Os ;
CCFLAGS = -Wall -Wextra -Wno-strict-aliasing -mmcu=$(MCU) -ffunction-sections -fdata-sections ;
C++FLAGS = $(CCFLAGS) -fno-exceptions -fno-strict-aliasing ;
LINKFLAGS = $(OPTIM) -lm -Wl,--gc-sections -mmcu=$(MCU) ;
AVRDUDEFLAGS = -V -F -D -C $(AVR_ETC)/avrdude.conf -p $(MCU) -c $(UPLOAD_PROTOCOL) -b $(UPLOAD_SPEED) ;
# Search everywhere for headers
HDRS = $(PROJECT_DIRS) $(AVR_INCLUDE) $(ARDUINO_CORE) $(ARDUINO_LIB)/$(PROJECT_LIBS) $(ARDUINO_LIB)/$(PROJECT_LIBS)/utility $(SKETCH_LIB)/$(PROJECT_LIBS) ;
# Output locations
LOCATE_TARGET = $(F_CPU) ;
LOCATE_SOURCE = $(F_CPU) ;
#
# Custom rules
#
rule GitVersion
{
Always $(<) ;
Depends all : $(<) ;
}
actions GitVersion
{
echo "const char program_version[] = \"\\" > $(<)
git log -1 --pretty=format:%h >> $(<)
echo "\";" >> $(<)
}
GitVersion version.h ;
rule Pde
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_SOURCE) ;
Clean clean : $(<) ;
}
if ( $(ARDUINO_VERSION) < 100 )
{
ARDUINO_H = WProgram.h ;
}
else
{
ARDUINO_H = Arduino.h ;
}
actions Pde
{
echo "#include <$(ARDUINO_H)>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule C++Pde
{
local _CPP = $(>:B).cpp ;
Pde $(_CPP) : $(>) ;
C++ $(<) : $(_CPP) ;
}
rule UserObject
{
switch $(>:S)
{
case .ino : C++Pde $(<) : $(>) ;
case .pde : C++Pde $(<) : $(>) ;
}
}
rule Objects
{
local _i ;
for _i in [ FGristFiles $(<) ]
{
local _b = $(_i:B)$(SUFOBJ) ;
local _o = $(_b:G=$(SOURCE_GRIST:E)) ;
Object $(_o) : $(_i) ;
Depends obj : $(_o) ;
}
}
rule Library
{
LibraryFromObjects $(<) : $(>:B)$(SUFOBJ) ;
Objects $(>) ;
}
rule Main
{
MainFromObjects $(<) : $(>:B)$(SUFOBJ) ;
Objects $(>) ;
}
rule Hex
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_TARGET) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions Hex
{
$(OBJCOPY) -O ihex -R .eeprom $(>) $(<)
}
rule Upload
{
Depends $(1) : $(2) ;
Depends $(2) : $(3) ;
NotFile $(1) ;
Always $(1) ;
Always $(2) ;
UploadAction $(2) : $(3) ;
}
actions UploadAction
{
$(AVRDUDE) $(AVRDUDEFLAGS) -P $(<) $(AVRDUDE_WRITE_FLASH) -U flash:w:$(>):i
}
rule Arduino
{
LINKFLAGS on $(<) = $(LINKFLAGS) -Wl,-Map=$(LOCATE_TARGET)/$(<:B).map ;
Main $(<) : $(>) ;
LinkLibraries $(<) : libs core ;
Hex $(<:B).hex : $(<) ;
for _p in $(PORTS)
{
Upload $(_p) : $(PORT_$(_p)) : $(<:B).hex ;
}
}
#
# Targets
#
# Grab everything from the core directory
Library core : [ GLOB $(ARDUINO_CORE) : *.c *.cpp ] ;
# Grab everything from libraries. To avoid this "grab everything" behaviour, you
# can specify specific modules to pick up in PROJECT_MODULES
Library libs : [ GLOB $(ARDUINO_LIB)/$(PROJECT_LIBS) $(ARDUINO_LIB)/$(PROJECT_LIBS)/utility $(SKETCH_LIB)/$(PROJECT_LIBS) : *.cpp *.c ] ;
# Main output executable
Arduino $(PWD:B).elf : $(PROJECT_MODULES) [ GLOB $(PROJECT_DIRS) : *.c *.cpp *.pde *.ino ] ;

View File

@@ -0,0 +1,142 @@
/*
Copyright (C) 2012 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example Nordic FOB Receiver
*
* This is an example of how to use the RF24 class to receive signals from the
* Sparkfun Nordic FOB. Thanks to Kirk Mower for providing test hardware.
*
* See blog post at http://maniacbug.wordpress.com/2012/01/08/nordic-fob/
*/
#include <SPI.h>
#include <RF24.h>
#include "nRF24L01.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
//
// Payload
//
struct payload_t
{
uint8_t buttons;
uint16_t id;
uint8_t empty;
};
const char* button_names[] = { "Up", "Down", "Left", "Right", "Center" };
const int num_buttons = 5;
//
// Forward declarations
//
uint16_t flip_endian(uint16_t in);
//
// Setup
//
void setup(void)
{
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\r\nRF24/examples/nordic_fob/\r\n");
//
// Setup and configure rf radio according to the built-in parameters
// of the FOB.
//
radio.begin();
radio.setChannel(2);
radio.setPayloadSize(4);
radio.setAutoAck(false);
radio.setCRCLength(RF24_CRC_8);
radio.openReadingPipe(1,0xE7E7E7E7E7LL);
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
}
//
// Loop
//
void loop(void)
{
//
// Receive each packet, dump it out
//
// if there is data ready
if ( radio.available() )
{
// Get the packet from the radio
payload_t payload;
radio.read( &payload, sizeof(payload) );
// Print the ID of this message. Note that the message
// is sent 'big-endian', so we have to flip it.
printf("#%05u Buttons ",flip_endian(payload.id));
// Print the name of each button
int i = num_buttons;
while (i--)
{
if ( ! ( payload.buttons & _BV(i) ) )
{
printf("%s ",button_names[i]);
}
}
// If no buttons, print None
if ( payload.buttons == _BV(num_buttons) - 1 )
printf("None");
printf("\r\n");
}
}
//
// Helper functions
//
// Change a big-endian word into a little-endian
uint16_t flip_endian(uint16_t in)
{
uint16_t low = in >> 8;
uint16_t high = in << 8;
return high | low;
}
// vim:cin:ai:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,37 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#ifdef ARDUINO
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#else
#error This example is only for use on Arduino.
#endif // ARDUINO
#endif // __PRINTF_H__

View File

@@ -0,0 +1,219 @@
# (1) Project Information
PROJECT_LIBS = SPI RF24 ;
PROJECT_DIRS = $(PWD) ;
# (2) Board Information
UPLOAD_PROTOCOL ?= arduino ;
UPLOAD_SPEED ?= 115200 ;
MCU ?= atmega328p ;
F_CPU ?= 16000000 ;
CORE ?= arduino ;
VARIANT ?= standard ;
ARDUINO_VERSION ?= 100 ;
# (3) USB Ports
PORTS = p4 p6 p9 u0 u1 u2 ;
PORT_p6 = /dev/tty.usbserial-A600eHIs ;
PORT_p4 = /dev/tty.usbserial-A40081RP ;
PORT_p9 = /dev/tty.usbserial-A9007LmI ;
PORT_u0 = /dev/ttyUSB0 ;
PORT_u1 = /dev/ttyUSB1 ;
PORT_u2 = /dev/ttyUSB2 ;
# (4) Location of AVR tools
#
# This configuration assumes using avr-tools that were obtained separate from the Arduino
# distribution.
if $(OS) = MACOSX
{
AVR_BIN ?= /usr/local/avrtools/bin ;
AVR_ETC = /usr/local/avrtools/etc ;
AVR_INCLUDE = /usr/local/avrtools/include ;
}
else
{
AVR_BIN ?= /usr/bin ;
AVR_INCLUDE = /usr/lib/avr/include ;
AVR_ETC = /etc ;
}
# (5) Directories where Arduino core and libraries are located
ARDUINO_DIR ?= /opt/Arduino ;
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/$(CORE) $(ARDUINO_DIR)/hardware/arduino/variants/$(VARIANT) ;
ARDUINO_LIB = $(ARDUINO_DIR)/libraries ;
SKETCH_LIB = $(HOME)/Source/Arduino/libraries ;
#
# --------------------------------------------------
# Below this line usually never needs to be modified
#
# Tool locations
CC = $(AVR_BIN)/avr-gcc ;
C++ = $(AVR_BIN)/avr-g++ ;
LINK = $(AVR_BIN)/avr-gcc ;
AR = $(AVR_BIN)/avr-ar rcs ;
RANLIB = ;
OBJCOPY = $(AVR_BIN)/avr-objcopy ;
AVRDUDE ?= $(AVR_BIN)/avrdude ;
# Flags
DEFINES += F_CPU=$(F_CPU)L ARDUINO=$(ARDUINO_VERSION) VERSION_H ;
OPTIM = -Os ;
CCFLAGS = -Wall -Wextra -Wno-strict-aliasing -mmcu=$(MCU) -ffunction-sections -fdata-sections ;
C++FLAGS = $(CCFLAGS) -fno-exceptions -fno-strict-aliasing ;
LINKFLAGS = $(OPTIM) -lm -Wl,--gc-sections -mmcu=$(MCU) ;
AVRDUDEFLAGS = -V -F -D -C $(AVR_ETC)/avrdude.conf -p $(MCU) -c $(UPLOAD_PROTOCOL) -b $(UPLOAD_SPEED) ;
# Search everywhere for headers
HDRS = $(PROJECT_DIRS) $(AVR_INCLUDE) $(ARDUINO_CORE) $(ARDUINO_LIB)/$(PROJECT_LIBS) $(ARDUINO_LIB)/$(PROJECT_LIBS)/utility $(SKETCH_LIB)/$(PROJECT_LIBS) ;
# Output locations
LOCATE_TARGET = $(F_CPU) ;
LOCATE_SOURCE = $(F_CPU) ;
#
# Custom rules
#
rule GitVersion
{
Always $(<) ;
Depends all : $(<) ;
}
actions GitVersion
{
echo "const char program_version[] = \"\\" > $(<)
git log -1 --pretty=format:%h >> $(<)
echo "\";" >> $(<)
}
GitVersion version.h ;
rule Pde
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_SOURCE) ;
Clean clean : $(<) ;
}
if ( $(ARDUINO_VERSION) < 100 )
{
ARDUINO_H = WProgram.h ;
}
else
{
ARDUINO_H = Arduino.h ;
}
actions Pde
{
echo "#include <$(ARDUINO_H)>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule C++Pde
{
local _CPP = $(>:B).cpp ;
Pde $(_CPP) : $(>) ;
C++ $(<) : $(_CPP) ;
}
rule UserObject
{
switch $(>:S)
{
case .ino : C++Pde $(<) : $(>) ;
case .pde : C++Pde $(<) : $(>) ;
}
}
rule Objects
{
local _i ;
for _i in [ FGristFiles $(<) ]
{
local _b = $(_i:B)$(SUFOBJ) ;
local _o = $(_b:G=$(SOURCE_GRIST:E)) ;
Object $(_o) : $(_i) ;
Depends obj : $(_o) ;
}
}
rule Library
{
LibraryFromObjects $(<) : $(>:B)$(SUFOBJ) ;
Objects $(>) ;
}
rule Main
{
MainFromObjects $(<) : $(>:B)$(SUFOBJ) ;
Objects $(>) ;
}
rule Hex
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_TARGET) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions Hex
{
$(OBJCOPY) -O ihex -R .eeprom $(>) $(<)
}
rule Upload
{
Depends $(1) : $(2) ;
Depends $(2) : $(3) ;
NotFile $(1) ;
Always $(1) ;
Always $(2) ;
UploadAction $(2) : $(3) ;
}
actions UploadAction
{
$(AVRDUDE) $(AVRDUDEFLAGS) -P $(<) $(AVRDUDE_WRITE_FLASH) -U flash:w:$(>):i
}
rule Arduino
{
LINKFLAGS on $(<) = $(LINKFLAGS) -Wl,-Map=$(LOCATE_TARGET)/$(<:B).map ;
Main $(<) : $(>) ;
LinkLibraries $(<) : core libs ;
Hex $(<:B).hex : $(<) ;
for _p in $(PORTS)
{
Upload $(_p) : $(PORT_$(_p)) : $(<:B).hex ;
}
}
#
# Targets
#
# Grab everything from the core directory
Library core : [ GLOB $(ARDUINO_CORE) : *.c *.cpp ] ;
# Grab everything from libraries. To avoid this "grab everything" behaviour, you
# can specify specific modules to pick up in PROJECT_MODULES
Library libs : [ GLOB $(ARDUINO_LIB)/$(PROJECT_LIBS) $(ARDUINO_LIB)/$(PROJECT_LIBS)/utility $(SKETCH_LIB)/$(PROJECT_LIBS) : *.cpp *.c ] ;
# Main output executable
Arduino $(PWD:B).elf : $(PROJECT_MODULES) [ GLOB $(PROJECT_DIRS) : *.c *.cpp *.pde *.ino ] ;

View File

@@ -0,0 +1,220 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example RF Radio Ping Pair
*
* This is an example of how to use the RF24 class. Write this sketch to two different nodes,
* connect the role_pin to ground on one. The ping node sends the current time to the pong node,
* which responds by sending the value back. The ping node can then see how long the whole cycle
* took.
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver
// Leave open to be the 'ping' transmitter
const int role_pin = 7;
//
// Topology
//
// Radio pipe addresses for the 2 nodes to communicate.
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the role_pin
//
// The various roles supported by this sketch
typedef enum { role_ping_out = 1, role_pong_back } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
// The role of the current running sketch
role_e role;
void setup(void)
{
//
// Role
//
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role
if ( ! digitalRead(role_pin) )
role = role_ping_out;
else
role = role_pong_back;
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/pingpair/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
//
// Setup and configure rf radio
//
radio.begin();
// optionally, increase the delay between retries & # of retries
radio.setRetries(15,15);
// optionally, reduce the payload size. seems to
// improve reliability
radio.setPayloadSize(8);
//
// Open pipes to other nodes for communication
//
// This simple sketch opens two pipes for these two nodes to communicate
// back and forth.
// Open 'our' pipe for writing
// Open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
if ( role == role_ping_out )
{
radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
}
else
{
radio.openWritingPipe(pipes[1]);
radio.openReadingPipe(1,pipes[0]);
}
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
}
void loop(void)
{
//
// Ping out role. Repeatedly send the current time
//
if (role == role_ping_out)
{
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
bool ok = radio.write( &time, sizeof(unsigned long) );
if (ok)
printf("ok...");
else
printf("failed.\n\r");
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout (250ms)
unsigned long started_waiting_at = millis();
bool timeout = false;
while ( ! radio.available() && ! timeout )
if (millis() - started_waiting_at > 200 )
timeout = true;
// Describe the results
if ( timeout )
{
printf("Failed, response timed out.\n\r");
}
else
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
}
// Try again 1s later
delay(1000);
}
//
// Pong back role. Receive each packet, dump it out, and send it back
//
if ( role == role_pong_back )
{
// if there is data ready
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
unsigned long got_time;
bool done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got payload %lu...",got_time);
// Delay just a little bit to let the other unit
// make the transition to receiver
delay(20);
}
// First, stop listening so we can talk
radio.stopListening();
// Send the final one back.
radio.write( &got_time, sizeof(unsigned long) );
printf("Sent response.\n\r");
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
}
// vim:cin:ai:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,37 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#ifdef ARDUINO
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#else
#error This example is only for use on Arduino.
#endif // ARDUINO
#endif // __PRINTF_H__

View File

@@ -0,0 +1,206 @@
PROJECT_NAME = $(PWD:B) ;
PROJECT_DIR = . ;
PROJECT_LIBS = SPI RF24 ;
OUT_DIR = ojam ;
F_CPU = 16000000 ;
MCU = atmega328p ;
PORTS = /dev/tty.usbserial-A600eHIs /dev/tty.usbserial-A40081RP /dev/tty.usbserial-A9007LmI ;
UPLOAD_RATE = 57600 ;
AVRDUDE_PROTOCOL = stk500v1 ;
COM = 33 ;
# Host-specific overrides for locations
if $(OS) = MACOSX
{
ARDUINO_VERSION = 22 ;
OLD_DIR = /opt/arduino-0021 ;
AVR_TOOLS_PATH = $(OLD_DIR)/hardware/tools/avr/bin ;
AVRDUDECONFIG_PATH = $(OLD_DIR)/hardware/tools/avr/etc ;
ARDUINO_DIR = /opt/Arduino ;
ARDUINO_AVR = /usr/lib/avr/include ;
}
# Where is everything?
ARDUINO_VERSION ?= 22 ;
AVR_TOOLS_PATH ?= /usr/bin ;
ARDUINO_DIR ?= /opt/arduino-00$(ARDUINO_VERSION) ;
ARDUINO_AVR ?= $(ARDUINO_DIR)/hardware/tools/avr/avr/include/avr ;
AVRDUDECONFIG_PATH ?= $(ARDUINO_DIR)/hardware/tools ;
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/arduino ;
ARDUINO_LIB = $(ARDUINO_DIR)/libraries ;
SKETCH_LIB = $(HOME)/Source/Arduino/libraries ;
AVR_CC = $(AVR_TOOLS_PATH)/avr-gcc ;
AVR_CXX = $(AVR_TOOLS_PATH)/avr-g++ ;
AVR_LD = $(AVR_TOOLS_PATH)/avr-gcc ;
AVR_OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy ;
AVRDUDE = $(AVR_TOOLS_PATH)/avrdude ;
DEFINES = F_CPU=$(F_CPU)L ARDUINO=$(ARDUINO_VERSION) VERSION_H ;
CTUNING = -ffunction-sections -fdata-sections ;
CXXTUNING = -fno-exceptions -fno-strict-aliasing ;
CFLAGS = -Os -Wall -Wextra -mmcu=$(MCU) $(CTUNING) ;
CXXFLAGS = $(CFLAGS) $(CXXTUNING) ;
LDFLAGS = -Os -lm -Wl,--gc-sections -mmcu=atmega328p ;
# Search everywhere for headers
HDRS = $(PROJECT_DIR) $(ARDUINO_AVR) $(ARDUINO_CORE) [ GLOB $(ARDUINO_LIB) $(SKETCH_LIB) : [^.]* ] ;
# Grab everything from the core directory
CORE_MODULES = [ GLOB $(ARDUINO_CORE) : *.c *.cpp ] ;
# Grab everything from libraries. To avoid this "grab everything" behaviour, you
# can specify specific modules to pick up in PROJECT_MODULES
LIB_MODULES = [ GLOB $(ARDUINO_LIB)/$(PROJECT_LIBS) $(SKETCH_LIB)/$(PROJECT_LIBS) : *.cpp ] ;
# In addition to explicitly-specified program modules, pick up anything from the current
# dir.
PROJECT_MODULES += [ GLOB $(PROJECT_DIR) : *.c *.cpp *.pde ] ;
# Shortcut for the out files
OUT = $(OUT_DIR)/$(PROJECT_NAME) ;
# AvrDude setup
AVRDUDE_FLAGS = -V -F -D -C $(AVRDUDECONFIG_PATH)/avrdude.conf -p $(MCU) -c $(AVRDUDE_PROTOCOL) -b $(UPLOAD_RATE) ;
rule GitVersion
{
Always $(<) ;
Depends all : $(<) ;
}
actions GitVersion
{
echo "const char program_version[] = \"\\" > $(<)
git log -1 --pretty=format:%h >> $(<)
echo "\";" >> $(<)
}
GitVersion version.h ;
rule AvrCc
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
CCHDRS on $(<) = [ on $(<) FIncludes $(HDRS) ] ;
CCDEFS on $(<) = [ on $(<) FDefines $(DEFINES) ] ;
}
actions AvrCc
{
$(AVR_CC) -c -o $(<) $(CCHDRS) $(CCDEFS) $(CFLAGS) $(>)
}
rule AvrC++
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
CCHDRS on $(<) = [ on $(<) FIncludes $(HDRS) ] ;
CCDEFS on $(<) = [ on $(<) FDefines $(DEFINES) ] ;
}
actions AvrC++
{
$(AVR_CXX) -c -o $(<) $(CCHDRS) $(CCDEFS) $(CXXFLAGS) $(>)
}
rule Pde
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
}
actions Pde
{
echo "#include <WProgram.h>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule AvrPde
{
local _CPP = $(OUT_DIR)/$(_I:B).cpp ;
Pde $(_CPP) : $(>) ;
AvrC++ $(<) : $(_CPP) ;
}
rule AvrObject
{
switch $(>:S)
{
case .c : AvrCc $(<) : $(>) ;
case .cpp : AvrC++ $(<) : $(>) ;
case .pde : AvrPde $(<) : $(>) ;
}
}
rule AvrObjects
{
for _I in $(<)
{
AvrObject $(OUT_DIR)/$(_I:B).o : $(_I) ;
}
}
rule AvrMainFromObjects
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
MkDir $(<:D) ;
Depends all : $(<) ;
Clean clean : $(<) ;
}
actions AvrMainFromObjects
{
$(AVR_LD) $(LDFLAGS) -o $(<) $(>)
}
rule AvrMain
{
AvrMainFromObjects $(<) : $(OUT_DIR)/$(>:B).o ;
AvrObjects $(>) ;
}
rule AvrHex
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions AvrHex
{
$(AVR_OBJCOPY) -O ihex -R .eeprom $(>) $(<)
}
rule AvrUpload
{
Depends $(1) : $(2) ;
Depends $(2) : $(3) ;
NotFile $(1) ;
Always $(1) ;
Always $(2) ;
AvrUploadAction $(2) : $(3) ;
}
actions AvrUploadAction
{
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(<) $(AVRDUDE_WRITE_FLASH) -U flash:w:$(>):i
}
AvrMain $(OUT).elf : $(CORE_MODULES) $(LIB_MODULES) $(PROJECT_MODULES) ;
AvrHex $(OUT).hex : $(OUT).elf ;
AvrUpload p6 : /dev/tty.usbserial-A600eHIs : $(OUT).hex ;
AvrUpload p4 : /dev/tty.usbserial-A40081RP : $(OUT).hex ;
AvrUpload p9 : /dev/tty.usbserial-A9007LmI : $(OUT).hex ;

View File

@@ -0,0 +1,232 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example using Dynamic Payloads
*
* This is an example of how to use payloads of a varying (dynamic) size.
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver
// Leave open to be the 'ping' transmitter
const int role_pin = 7;
//
// Topology
//
// Radio pipe addresses for the 2 nodes to communicate.
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the role_pin
//
// The various roles supported by this sketch
typedef enum { role_ping_out = 1, role_pong_back } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
// The role of the current running sketch
role_e role;
//
// Payload
//
const int min_payload_size = 4;
const int max_payload_size = 32;
const int payload_size_increments_by = 2;
int next_payload_size = min_payload_size;
char receive_payload[max_payload_size+1]; // +1 to allow room for a terminating NULL char
void setup(void)
{
//
// Role
//
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role
if ( digitalRead(role_pin) )
role = role_ping_out;
else
role = role_pong_back;
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/pingpair_dyn/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
//
// Setup and configure rf radio
//
radio.begin();
// enable dynamic payloads
radio.enableDynamicPayloads();
// optionally, increase the delay between retries & # of retries
radio.setRetries(15,15);
//
// Open pipes to other nodes for communication
//
// This simple sketch opens two pipes for these two nodes to communicate
// back and forth.
// Open 'our' pipe for writing
// Open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
if ( role == role_ping_out )
{
radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
}
else
{
radio.openWritingPipe(pipes[1]);
radio.openReadingPipe(1,pipes[0]);
}
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
}
void loop(void)
{
//
// Ping out role. Repeatedly send the current time
//
if (role == role_ping_out)
{
// The payload will always be the same, what will change is how much of it we send.
static char send_payload[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ789012";
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
printf("Now sending length %i...",next_payload_size);
radio.write( send_payload, next_payload_size );
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout
unsigned long started_waiting_at = millis();
bool timeout = false;
while ( ! radio.available() && ! timeout )
if (millis() - started_waiting_at > 500 )
timeout = true;
// Describe the results
if ( timeout )
{
printf("Failed, response timed out.\n\r");
}
else
{
// Grab the response, compare, and send to debugging spew
uint8_t len = radio.getDynamicPayloadSize();
radio.read( receive_payload, len );
// Put a zero at the end for easy printing
receive_payload[len] = 0;
// Spew it
printf("Got response size=%i value=%s\n\r",len,receive_payload);
}
// Update size for next time.
next_payload_size += payload_size_increments_by;
if ( next_payload_size > max_payload_size )
next_payload_size = min_payload_size;
// Try again 1s later
delay(1000);
}
//
// Pong back role. Receive each packet, dump it out, and send it back
//
if ( role == role_pong_back )
{
// if there is data ready
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
uint8_t len;
bool done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
len = radio.getDynamicPayloadSize();
done = radio.read( receive_payload, len );
// Put a zero at the end for easy printing
receive_payload[len] = 0;
// Spew it
printf("Got payload size=%i value=%s\n\r",len,receive_payload);
}
// First, stop listening so we can talk
radio.stopListening();
// Send the final one back.
radio.write( receive_payload, len );
printf("Sent response.\n\r");
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
}
// vim:cin:ai:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,37 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#ifdef ARDUINO
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#else
#error This example is only for use on Arduino.
#endif // ARDUINO
#endif // __PRINTF_H__

View File

@@ -0,0 +1,219 @@
# (1) Project Information
PROJECT_LIBS = SPI RF24 ;
PROJECT_DIRS = $(PWD) ;
# (2) Board Information
UPLOAD_PROTOCOL ?= arduino ;
UPLOAD_SPEED ?= 115200 ;
MCU ?= atmega328p ;
F_CPU ?= 16000000 ;
CORE ?= arduino ;
VARIANT ?= standard ;
ARDUINO_VERSION ?= 100 ;
# (3) USB Ports
PORTS = p4 p6 p9 u0 u1 u2 ;
PORT_p6 = /dev/tty.usbserial-A600eHIs ;
PORT_p4 = /dev/tty.usbserial-A40081RP ;
PORT_p9 = /dev/tty.usbserial-A9007LmI ;
PORT_u0 = /dev/ttyUSB0 ;
PORT_u1 = /dev/ttyUSB1 ;
PORT_u2 = /dev/ttyUSB2 ;
# (4) Location of AVR tools
#
# This configuration assumes using avr-tools that were obtained separate from the Arduino
# distribution.
if $(OS) = MACOSX
{
AVR_BIN ?= /usr/local/avrtools/bin ;
AVR_ETC = /usr/local/avrtools/etc ;
AVR_INCLUDE = /usr/local/avrtools/include ;
}
else
{
AVR_BIN ?= /usr/bin ;
AVR_INCLUDE ?= /usr/lib/avr/include ;
AVR_ETC = /etc ;
}
# (5) Directories where Arduino core and libraries are located
ARDUINO_DIR ?= /opt/Arduino ;
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/$(CORE) $(ARDUINO_DIR)/hardware/arduino/variants/$(VARIANT) ;
ARDUINO_LIB = $(ARDUINO_DIR)/libraries ;
SKETCH_LIB = $(HOME)/Source/Arduino/libraries ;
#
# --------------------------------------------------
# Below this line usually never needs to be modified
#
# Tool locations
CC = $(AVR_BIN)/avr-gcc ;
C++ = $(AVR_BIN)/avr-g++ ;
LINK = $(AVR_BIN)/avr-gcc ;
AR = $(AVR_BIN)/avr-ar rcs ;
RANLIB = ;
OBJCOPY = $(AVR_BIN)/avr-objcopy ;
AVRDUDE ?= $(AVR_BIN)/avrdude ;
# Flags
DEFINES += F_CPU=$(F_CPU)L ARDUINO=$(ARDUINO_VERSION) VERSION_H ;
OPTIM = -Os ;
CCFLAGS = -Wall -Wextra -Wno-strict-aliasing -mmcu=$(MCU) -ffunction-sections -fdata-sections ;
C++FLAGS = $(CCFLAGS) -fno-exceptions -fno-strict-aliasing ;
LINKFLAGS = $(OPTIM) -lm -Wl,--gc-sections -mmcu=$(MCU) ;
AVRDUDEFLAGS = -V -F -D -C $(AVR_ETC)/avrdude.conf -p $(MCU) -c $(UPLOAD_PROTOCOL) -b $(UPLOAD_SPEED) ;
# Search everywhere for headers
HDRS = $(PROJECT_DIRS) $(AVR_INCLUDE) $(ARDUINO_CORE) $(ARDUINO_LIB)/$(PROJECT_LIBS) $(ARDUINO_LIB)/$(PROJECT_LIBS)/utility $(SKETCH_LIB)/$(PROJECT_LIBS) ;
# Output locations
LOCATE_TARGET = $(F_CPU) ;
LOCATE_SOURCE = $(F_CPU) ;
#
# Custom rules
#
rule GitVersion
{
Always $(<) ;
Depends all : $(<) ;
}
actions GitVersion
{
echo "const char program_version[] = \"\\" > $(<)
git log -1 --pretty=format:%h >> $(<)
echo "\";" >> $(<)
}
GitVersion version.h ;
rule Pde
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_SOURCE) ;
Clean clean : $(<) ;
}
if ( $(ARDUINO_VERSION) < 100 )
{
ARDUINO_H = WProgram.h ;
}
else
{
ARDUINO_H = Arduino.h ;
}
actions Pde
{
echo "#include <$(ARDUINO_H)>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule C++Pde
{
local _CPP = $(>:B).cpp ;
Pde $(_CPP) : $(>) ;
C++ $(<) : $(_CPP) ;
}
rule UserObject
{
switch $(>:S)
{
case .ino : C++Pde $(<) : $(>) ;
case .pde : C++Pde $(<) : $(>) ;
}
}
rule Objects
{
local _i ;
for _i in [ FGristFiles $(<) ]
{
local _b = $(_i:B)$(SUFOBJ) ;
local _o = $(_b:G=$(SOURCE_GRIST:E)) ;
Object $(_o) : $(_i) ;
Depends obj : $(_o) ;
}
}
rule Library
{
LibraryFromObjects $(<) : $(>:B)$(SUFOBJ) ;
Objects $(>) ;
}
rule Main
{
MainFromObjects $(<) : $(>:B)$(SUFOBJ) ;
Objects $(>) ;
}
rule Hex
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_TARGET) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions Hex
{
$(OBJCOPY) -O ihex -R .eeprom $(>) $(<)
}
rule Upload
{
Depends $(1) : $(2) ;
Depends $(2) : $(3) ;
NotFile $(1) ;
Always $(1) ;
Always $(2) ;
UploadAction $(2) : $(3) ;
}
actions UploadAction
{
$(AVRDUDE) $(AVRDUDEFLAGS) -P $(<) $(AVRDUDE_WRITE_FLASH) -U flash:w:$(>):i
}
rule Arduino
{
LINKFLAGS on $(<) = $(LINKFLAGS) -Wl,-Map=$(LOCATE_TARGET)/$(<:B).map ;
Main $(<) : $(>) ;
LinkLibraries $(<) : core libs ;
Hex $(<:B).hex : $(<) ;
for _p in $(PORTS)
{
Upload $(_p) : $(PORT_$(_p)) : $(<:B).hex ;
}
}
#
# Targets
#
# Grab everything from the core directory
Library core : [ GLOB $(ARDUINO_CORE) : *.c *.cpp ] ;
# Grab everything from libraries. To avoid this "grab everything" behaviour, you
# can specify specific modules to pick up in PROJECT_MODULES
Library libs : [ GLOB $(ARDUINO_LIB)/$(PROJECT_LIBS) $(ARDUINO_LIB)/$(PROJECT_LIBS)/utility $(SKETCH_LIB)/$(PROJECT_LIBS) : *.cpp *.c ] ;
# Main output executable
Arduino $(PWD:B).elf : $(PROJECT_MODULES) [ GLOB $(PROJECT_DIRS) : *.c *.cpp *.pde *.ino ] ;

View File

@@ -0,0 +1,216 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example of using interrupts
*
* This is an example of how to user interrupts to interact with the radio.
* It builds on the pingpair_pl example, and uses ack payloads.
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(8,9);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver
// Leave open to be the 'ping' transmitter
const short role_pin = 7;
//
// Topology
//
// Single radio pipe address for the 2 nodes to communicate.
const uint64_t pipe = 0xE8E8F0F0E1LL;
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes in this
// system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the role_pin
//
// The various roles supported by this sketch
typedef enum { role_sender = 1, role_receiver } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Sender", "Receiver"};
// The role of the current running sketch
role_e role;
// Interrupt handler, check the radio because we got an IRQ
void check_radio(void);
void setup(void)
{
//
// Role
//
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role
if ( digitalRead(role_pin) )
role = role_sender;
else
role = role_receiver;
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/pingpair_irq/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
//
// Setup and configure rf radio
//
radio.begin();
// We will be using the Ack Payload feature, so please enable it
radio.enableAckPayload();
//
// Open pipes to other nodes for communication
//
// This simple sketch opens a single pipe for these two nodes to communicate
// back and forth. One listens on it, the other talks to it.
if ( role == role_sender )
{
radio.openWritingPipe(pipe);
}
else
{
radio.openReadingPipe(1,pipe);
}
//
// Start listening
//
if ( role == role_receiver )
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
//
// Attach interrupt handler to interrupt #0 (using pin 2)
// on BOTH the sender and receiver
//
attachInterrupt(0, check_radio, FALLING);
}
static uint32_t message_count = 0;
void loop(void)
{
//
// Sender role. Repeatedly send the current time
//
if (role == role_sender)
{
// Take the time, and send it.
unsigned long time = millis();
printf("Now sending %lu\n\r",time);
radio.startWrite( &time, sizeof(unsigned long) );
// Try again soon
delay(2000);
}
//
// Receiver role: Does nothing! All the work is in IRQ
//
}
void check_radio(void)
{
// What happened?
bool tx,fail,rx;
radio.whatHappened(tx,fail,rx);
// Have we successfully transmitted?
if ( tx )
{
if ( role == role_sender )
printf("Send:OK\n\r");
if ( role == role_receiver )
printf("Ack Payload:Sent\n\r");
}
// Have we failed to transmit?
if ( fail )
{
if ( role == role_sender )
printf("Send:Failed\n\r");
if ( role == role_receiver )
printf("Ack Payload:Failed\n\r");
}
// Transmitter can power down for now, because
// the transmission is done.
if ( ( tx || fail ) && ( role == role_sender ) )
radio.powerDown();
// Did we receive a message?
if ( rx )
{
// If we're the sender, we've received an ack payload
if ( role == role_sender )
{
radio.read(&message_count,sizeof(message_count));
printf("Ack:%lu\n\r",message_count);
}
// If we're the receiver, we've received a time message
if ( role == role_receiver )
{
// Get this payload and dump it
static unsigned long got_time;
radio.read( &got_time, sizeof(got_time) );
printf("Got payload %lu\n\r",got_time);
// Add an ack packet for the next time around. This is a simple
// packet counter
radio.writeAckPayload( 1, &message_count, sizeof(message_count) );
++message_count;
}
}
}
// vim:ai:cin:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,37 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#ifdef ARDUINO
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#else
#error This example is only for use on Arduino.
#endif // ARDUINO
#endif // __PRINTF_H__

View File

@@ -0,0 +1,182 @@
MCU = cortex-m3 ;
CHIP = STM32F103ZE ;
BOARD = maple_native ;
#CHIP = at91sam3u4 ;
#BOARD = sam3u-ek ;
if ! $(TOOLSET)
{
TOOLSET = devkit ;
Echo "Assuming TOOLSET=devkit" ;
}
if $(TOOLSET) = yagarto
{
TOOLS_PATH = ~/Source/yagarto-4.6.2/bin ;
TOOLS_ARCH = arm-none-eabi- ;
}
if $(TOOLSET) = yagarto-install
{
TOOLS_PATH = ~/Source/yagarto/install/bin ;
TOOLS_ARCH = arm-none-eabi- ;
}
else if $(TOOLSET) = devkit
{
TOOLS_PATH = /opt/devkitARM/bin ;
TOOLS_ARCH = arm-eabi- ;
}
else if $(TOOLSET) = maple
{
TOOLS_PATH = /opt/Maple/Resources/Java/hardware/tools/arm/bin ;
TOOLS_ARCH = arm-none-eabi- ;
}
else if $(TOOLSET) = ports
{
TOOLS_PATH = /opt/local/bin ;
TOOLS_ARCH = arm-none-eabi- ;
}
CC = $(TOOLS_PATH)/$(TOOLS_ARCH)gcc ;
C++ = $(TOOLS_PATH)/$(TOOLS_ARCH)g++ ;
AS = $(TOOLS_PATH)/$(TOOLS_ARCH)gcc -c ;
LINK = $(TOOLS_PATH)/$(TOOLS_ARCH)g++ ;
OBJCOPY = $(TOOLS_PATH)/$(TOOLS_ARCH)objcopy ;
DFU = dfu-util ;
DEFINES += VECT_TAB_FLASH BOARD_$(BOARD) MCU_$(CHIP) ERROR_LED_PORT=GPIOC ERROR_LED_PIN=15 STM32_HIGH_DENSITY MAPLE_IDE ;
OPTIM = -Os ;
MFLAGS = cpu=$(MCU) thumb arch=armv7-m ;
CCFLAGS = -Wall -m$(MFLAGS) -g -nostdlib -ffunction-sections -fdata-sections -Wl,--gc-sections ;
C++FLAGS = $(CCFLAGS) -fno-rtti -fno-exceptions ;
LINKFLAGS += -m$(MFLAGS) -Xlinker --gc-sections ;
DFUFLAGS = -a1 -d 0x1eaf:0x0003 -R ;
MAPLE_DIR = $(HOME)/Source/SAM3U/libmaple ;
MAPLE_LIBS = Servo LiquidCrystal Wire FreeRTOS ;
MAPLE_SUBDIRS = wirish wirish/comm wirish/boards libmaple libmaple/usb libmaple/usb/usb_lib ;
SKETCH_DIR = $(HOME)/Source/Arduino ;
SKETCH_LIBS = RF24 ;
MODULE_DIRS = . $(MAPLE_DIR)/$(MAPLE_SUBDIRS) $(MAPLE_DIR)/libraries/$(MAPLE_LIBS) $(SKETCH_DIR)/libraries/$(SKETCH_LIBS) ;
HDRS = $(MODULE_DIRS) ;
LOCATE_TARGET = out/$(TOOLSET) ;
LOCATE_SOURCE = $(LOCATE_TARGET) ;
rule Pde
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_SOURCE) ;
Clean clean : $(<) ;
}
if ( $(ARDUINO_VERSION) < 100 )
{
ARDUINO_H = WProgram.h ;
}
else
{
ARDUINO_H = Arduino.h ;
}
actions Pde
{
echo "#include <$(ARDUINO_H)>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule C++Pde
{
local _CPP = $(>:B).cpp ;
Pde $(_CPP) : $(>) ;
C++ $(<) : $(_CPP) ;
}
rule Hex
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_TARGET) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions Hex
{
$(OBJCOPY) -O ihex $(>) $(<)
}
rule Binary
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_TARGET) ;
Depends binary : $(<) ;
Clean clean : $(<) ;
}
actions Binary
{
$(OBJCOPY) -O binary $(>) $(<)
}
rule UserObject
{
switch $(>:S)
{
case .S : As $(<) : $(>) ;
case .ino : C++Pde $(<) : $(>) ;
case .pde : C++Pde $(<) : $(>) ;
}
}
rule Upload
{
Depends up : $(<) ;
NotFile up ;
Always $(<) ;
Always up ;
}
actions Upload
{
$(DFU) $(DFUFLAGS) -D $(<)
}
# Override base objects rule, so all output can go in the output dir
rule Objects
{
local _i ;
for _i in [ FGristFiles $(<) ]
{
local _b = $(_i:B)$(SUFOBJ) ;
local _o = $(_b:G=$(SOURCE_GRIST:E)) ;
Object $(_o) : $(_i) ;
Depends obj : $(_o) ;
}
}
# Override base main rule, so all output can go in the output dir
rule Main
{
MainFromObjects $(<) : $(>:B)$(SUFOBJ) ;
Objects $(>) ;
}
# Modules
MODULES = [ GLOB $(MODULE_DIRS) : *.pde *.c *.cpp *.S ] ;
# Main output executable
MAIN = $(PWD:B).elf ;
# Linker script
LINK_DIR = $(MAPLE_DIR)/support/ld ;
LINKSCRIPT = $(LINK_DIR)/$(BOARD)/flash.ld ;
# Bring in the map and link script
LINKFLAGS += -Wl,-Map=$(LOCATE_TARGET)/$(MAIN:B).map -T$(LINKSCRIPT) -L$(LINK_DIR) ;
Main $(MAIN) : $(MODULES) ;
Binary $(MAIN:B).bin : $(MAIN) ;
Upload $(MAIN:B).bin ;

View File

@@ -0,0 +1,87 @@
#ifdef MAPLE_IDE
#include <stdio.h>
#include "wirish.h"
extern void setup(void);
extern void loop(void);
void board_start(const char* program_name)
{
// Set up the LED to steady on
pinMode(BOARD_LED_PIN, OUTPUT);
digitalWrite(BOARD_LED_PIN, HIGH);
// Setup the button as input
pinMode(BOARD_BUTTON_PIN, INPUT);
digitalWrite(BOARD_BUTTON_PIN, HIGH);
SerialUSB.begin();
SerialUSB.println("Press BUT");
// Wait for button press
while ( !isButtonPressed() )
{
}
SerialUSB.println("Welcome!");
SerialUSB.println(program_name);
int i = 11;
while (i--)
{
toggleLED();
delay(50);
}
}
/**
* Custom version of _write, which will print to the USB.
* In order to use it you MUST ADD __attribute__((weak))
* to _write in libmaple/syscalls.c
*/
extern "C" int _write (int file, char * ptr, int len)
{
if ( (file != 1) && (file != 2) )
return 0;
else
SerialUSB.write(ptr,len);
return len;
}
/**
* Re-entrant version of _write. Yagarto and Devkit now use
* the re-entrant newlib, so these get called instead of the
* non_r versions.
*/
extern "C" int _write_r (void*, int file, char * ptr, int len)
{
return _write( file, ptr, len);
}
__attribute__((constructor)) __attribute__ ((weak)) void premain()
{
init();
}
__attribute__((weak)) void setup(void)
{
board_start("No program defined");
}
__attribute__((weak)) void loop(void)
{
}
__attribute__((weak)) int main(void)
{
setup();
while (true)
{
loop();
}
return 0;
}
#endif // ifdef MAPLE_IDE
// vim:cin:ai:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,242 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example RF Radio Ping Pair ... for Maple
*
* This is an example of how to use the RF24 class. Write this sketch to two different nodes,
* connect the role_pin to ground on one. The ping node sends the current time to the pong node,
* which responds by sending the value back. The ping node can then see how long the whole cycle
* took.
*/
#include "WProgram.h"
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
//
// Maple specific setup. Other than this section, the sketch is the same on Maple as on
// Arduino
//
#ifdef MAPLE_IDE
// External startup function
extern void board_start(const char* program_name);
// Use SPI #2.
HardwareSPI SPI(2);
#else
#define board_startup printf
#define toggleLED(x) (x)
#endif
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 7 & 6
// (This works for the Getting Started board plugged into the
// Maple Native backwards.)
RF24 radio(7,6);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver
// Leave open to be the 'ping' transmitter
const int role_pin = 10;
//
// Topology
//
// Radio pipe addresses for the 2 nodes to communicate.
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the role_pin
//
// The various roles supported by this sketch
typedef enum { role_ping_out = 1, role_pong_back } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
// The role of the current running sketch
role_e role;
void setup(void)
{
//
// Role
//
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role
if ( digitalRead(role_pin) )
role = role_ping_out;
else
role = role_pong_back;
//
// Print preamble
//
board_start("\n\rRF24/examples/pingpair/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
//
// Setup and configure rf radio
//
radio.begin();
// optionally, increase the delay between retries & # of retries
radio.setRetries(15,15);
// optionally, reduce the payload size. seems to
// improve reliability
radio.setPayloadSize(8);
//
// Open pipes to other nodes for communication
//
// This simple sketch opens two pipes for these two nodes to communicate
// back and forth.
// Open 'our' pipe for writing
// Open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
if ( role == role_ping_out )
{
radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
}
else
{
radio.openWritingPipe(pipes[1]);
radio.openReadingPipe(1,pipes[0]);
}
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
}
void loop(void)
{
//
// Ping out role. Repeatedly send the current time
//
if (role == role_ping_out)
{
toggleLED();
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
bool ok = radio.write( &time, sizeof(unsigned long) );
if (ok)
printf("ok...\r\n");
else
printf("failed.\r\n");
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout (250ms)
unsigned long started_waiting_at = millis();
bool timeout = false;
while ( ! radio.available() && ! timeout )
if (millis() - started_waiting_at > 200 )
timeout = true;
// Describe the results
if ( timeout )
{
printf("Failed, response timed out.\r\n");
}
else
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got response %lu, round-trip delay: %lu\r\n",got_time,millis()-got_time);
}
toggleLED();
// Try again 1s later
delay(1000);
}
//
// Pong back role. Receive each packet, dump it out, and send it back
//
if ( role == role_pong_back )
{
// if there is data ready
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
unsigned long got_time;
bool done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got payload %lu...",got_time);
// Delay just a little bit to let the other unit
// make the transition to receiver
delay(20);
}
// First, stop listening so we can talk
radio.stopListening();
// Send the final one back.
radio.write( &got_time, sizeof(unsigned long) );
printf("Sent response.\r\n");
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
}
// vim:cin:ai:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,206 @@
PROJECT_NAME = $(PWD:B) ;
PROJECT_DIR = . ;
PROJECT_LIBS = SPI RF24 ;
OUT_DIR = ojam ;
F_CPU = 16000000 ;
MCU = atmega328p ;
PORTS = /dev/tty.usbserial-A600eHIs /dev/tty.usbserial-A40081RP /dev/tty.usbserial-A9007LmI ;
UPLOAD_RATE = 57600 ;
AVRDUDE_PROTOCOL = stk500v1 ;
COM = 33 ;
# Host-specific overrides for locations
if $(OS) = MACOSX
{
ARDUINO_VERSION = 22 ;
OLD_DIR = /opt/arduino-0021 ;
AVR_TOOLS_PATH = $(OLD_DIR)/hardware/tools/avr/bin ;
AVRDUDECONFIG_PATH = $(OLD_DIR)/hardware/tools/avr/etc ;
ARDUINO_DIR = /opt/Arduino ;
ARDUINO_AVR = /usr/lib/avr/include ;
}
# Where is everything?
ARDUINO_VERSION ?= 22 ;
AVR_TOOLS_PATH ?= /usr/bin ;
ARDUINO_DIR ?= /opt/arduino-00$(ARDUINO_VERSION) ;
ARDUINO_AVR ?= $(ARDUINO_DIR)/hardware/tools/avr/avr/include/avr ;
AVRDUDECONFIG_PATH ?= $(ARDUINO_DIR)/hardware/tools ;
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/arduino ;
ARDUINO_LIB = $(ARDUINO_DIR)/libraries ;
SKETCH_LIB = $(HOME)/Source/Arduino/libraries ;
AVR_CC = $(AVR_TOOLS_PATH)/avr-gcc ;
AVR_CXX = $(AVR_TOOLS_PATH)/avr-g++ ;
AVR_LD = $(AVR_TOOLS_PATH)/avr-gcc ;
AVR_OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy ;
AVRDUDE = $(AVR_TOOLS_PATH)/avrdude ;
DEFINES = F_CPU=$(F_CPU)L ARDUINO=$(ARDUINO_VERSION) VERSION_H ;
CTUNING = -ffunction-sections -fdata-sections ;
CXXTUNING = -fno-exceptions -fno-strict-aliasing ;
CFLAGS = -Os -Wall -Wextra -mmcu=$(MCU) $(CTUNING) ;
CXXFLAGS = $(CFLAGS) $(CXXTUNING) ;
LDFLAGS = -Os -lm -Wl,--gc-sections -mmcu=atmega328p ;
# Search everywhere for headers
HDRS = $(PROJECT_DIR) $(ARDUINO_AVR) $(ARDUINO_CORE) [ GLOB $(ARDUINO_LIB) $(SKETCH_LIB) : [^.]* ] ;
# Grab everything from the core directory
CORE_MODULES = [ GLOB $(ARDUINO_CORE) : *.c *.cpp ] ;
# Grab everything from libraries. To avoid this "grab everything" behaviour, you
# can specify specific modules to pick up in PROJECT_MODULES
LIB_MODULES = [ GLOB $(ARDUINO_LIB)/$(PROJECT_LIBS) $(SKETCH_LIB)/$(PROJECT_LIBS) : *.cpp ] ;
# In addition to explicitly-specified program modules, pick up anything from the current
# dir.
PROJECT_MODULES += [ GLOB $(PROJECT_DIR) : *.c *.cpp *.pde ] ;
# Shortcut for the out files
OUT = $(OUT_DIR)/$(PROJECT_NAME) ;
# AvrDude setup
AVRDUDE_FLAGS = -V -F -D -C $(AVRDUDECONFIG_PATH)/avrdude.conf -p $(MCU) -c $(AVRDUDE_PROTOCOL) -b $(UPLOAD_RATE) ;
rule GitVersion
{
Always $(<) ;
Depends all : $(<) ;
}
actions GitVersion
{
echo "const char program_version[] = \"\\" > $(<)
git log -1 --pretty=format:%h >> $(<)
echo "\";" >> $(<)
}
GitVersion version.h ;
rule AvrCc
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
CCHDRS on $(<) = [ on $(<) FIncludes $(HDRS) ] ;
CCDEFS on $(<) = [ on $(<) FDefines $(DEFINES) ] ;
}
actions AvrCc
{
$(AVR_CC) -c -o $(<) $(CCHDRS) $(CCDEFS) $(CFLAGS) $(>)
}
rule AvrC++
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
CCHDRS on $(<) = [ on $(<) FIncludes $(HDRS) ] ;
CCDEFS on $(<) = [ on $(<) FDefines $(DEFINES) ] ;
}
actions AvrC++
{
$(AVR_CXX) -c -o $(<) $(CCHDRS) $(CCDEFS) $(CXXFLAGS) $(>)
}
rule Pde
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
}
actions Pde
{
echo "#include <WProgram.h>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule AvrPde
{
local _CPP = $(OUT_DIR)/$(_I:B).cpp ;
Pde $(_CPP) : $(>) ;
AvrC++ $(<) : $(_CPP) ;
}
rule AvrObject
{
switch $(>:S)
{
case .c : AvrCc $(<) : $(>) ;
case .cpp : AvrC++ $(<) : $(>) ;
case .pde : AvrPde $(<) : $(>) ;
}
}
rule AvrObjects
{
for _I in $(<)
{
AvrObject $(OUT_DIR)/$(_I:B).o : $(_I) ;
}
}
rule AvrMainFromObjects
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
MkDir $(<:D) ;
Depends all : $(<) ;
Clean clean : $(<) ;
}
actions AvrMainFromObjects
{
$(AVR_LD) $(LDFLAGS) -o $(<) $(>)
}
rule AvrMain
{
AvrMainFromObjects $(<) : $(OUT_DIR)/$(>:B).o ;
AvrObjects $(>) ;
}
rule AvrHex
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions AvrHex
{
$(AVR_OBJCOPY) -O ihex -R .eeprom $(>) $(<)
}
rule AvrUpload
{
Depends $(1) : $(2) ;
Depends $(2) : $(3) ;
NotFile $(1) ;
Always $(1) ;
Always $(2) ;
AvrUploadAction $(2) : $(3) ;
}
actions AvrUploadAction
{
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(<) $(AVRDUDE_WRITE_FLASH) -U flash:w:$(>):i
}
AvrMain $(OUT).elf : $(CORE_MODULES) $(LIB_MODULES) $(PROJECT_MODULES) ;
AvrHex $(OUT).hex : $(OUT).elf ;
AvrUpload p6 : /dev/tty.usbserial-A600eHIs : $(OUT).hex ;
AvrUpload p4 : /dev/tty.usbserial-A40081RP : $(OUT).hex ;
AvrUpload p9 : /dev/tty.usbserial-A9007LmI : $(OUT).hex ;

View File

@@ -0,0 +1,180 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example of using Ack Payloads
*
* This is an example of how to do two-way communication without changing
* transmit/receive modes. Here, a payload is set to the transmitter within
* the Ack packet of each transmission. Note that the payload is set BEFORE
* the sender's message arrives.
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver
// Leave open to be the 'ping' transmitter
const short role_pin = 7;
//
// Topology
//
// Single radio pipe address for the 2 nodes to communicate.
const uint64_t pipe = 0xE8E8F0F0E1LL;
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes in this
// system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the role_pin
//
// The various roles supported by this sketch
typedef enum { role_sender = 1, role_receiver } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Sender", "Receiver"};
// The role of the current running sketch
role_e role;
void setup(void)
{
//
// Role
//
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role
if ( digitalRead(role_pin) )
role = role_sender;
else
role = role_receiver;
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/pingpair_pl/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
//
// Setup and configure rf radio
//
radio.begin();
// We will be using the Ack Payload feature, so please enable it
radio.enableAckPayload();
//
// Open pipes to other nodes for communication
//
// This simple sketch opens a single pipes for these two nodes to communicate
// back and forth. One listens on it, the other talks to it.
if ( role == role_sender )
{
radio.openWritingPipe(pipe);
}
else
{
radio.openReadingPipe(1,pipe);
}
//
// Start listening
//
if ( role == role_receiver )
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
}
void loop(void)
{
static uint32_t message_count = 0;
//
// Sender role. Repeatedly send the current time
//
if (role == role_sender)
{
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
radio.write( &time, sizeof(unsigned long) );
if ( radio.isAckPayloadAvailable() )
{
radio.read(&message_count,sizeof(message_count));
printf("Ack: [%lu] ",message_count);
}
printf("OK\n\r");
// Try again soon
delay(2000);
}
//
// Receiver role. Receive each packet, dump it out, add ack payload for next time
//
if ( role == role_receiver )
{
// if there is data ready
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
static unsigned long got_time;
bool done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got payload %lu\n",got_time);
}
// Add an ack packet for the next time around. This is a simple
// packet counter
radio.writeAckPayload( 1, &message_count, sizeof(message_count) );
++message_count;
}
}
}
// vim:ai:cin:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,37 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#ifdef ARDUINO
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#else
#error This example is only for use on Arduino.
#endif // ARDUINO
#endif // __PRINTF_H__

View File

@@ -0,0 +1,206 @@
PROJECT_NAME = $(PWD:B) ;
PROJECT_DIR = . ;
PROJECT_LIBS = SPI RF24 ;
OUT_DIR = ojam ;
F_CPU = 16000000 ;
MCU = atmega328p ;
PORTS = /dev/tty.usbserial-A600eHIs /dev/tty.usbserial-A40081RP /dev/tty.usbserial-A9007LmI ;
UPLOAD_RATE = 57600 ;
AVRDUDE_PROTOCOL = stk500v1 ;
COM = 33 ;
# Host-specific overrides for locations
if $(OS) = MACOSX
{
ARDUINO_VERSION = 22 ;
OLD_DIR = /opt/arduino-0021 ;
AVR_TOOLS_PATH = $(OLD_DIR)/hardware/tools/avr/bin ;
AVRDUDECONFIG_PATH = $(OLD_DIR)/hardware/tools/avr/etc ;
ARDUINO_DIR = /opt/Arduino ;
ARDUINO_AVR = /usr/lib/avr/include ;
}
# Where is everything?
ARDUINO_VERSION ?= 22 ;
AVR_TOOLS_PATH ?= /usr/bin ;
ARDUINO_DIR ?= /opt/arduino-00$(ARDUINO_VERSION) ;
ARDUINO_AVR ?= $(ARDUINO_DIR)/hardware/tools/avr/avr/include/avr ;
AVRDUDECONFIG_PATH ?= $(ARDUINO_DIR)/hardware/tools ;
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/arduino ;
ARDUINO_LIB = $(ARDUINO_DIR)/libraries ;
SKETCH_LIB = $(HOME)/Source/Arduino/libraries ;
AVR_CC = $(AVR_TOOLS_PATH)/avr-gcc ;
AVR_CXX = $(AVR_TOOLS_PATH)/avr-g++ ;
AVR_LD = $(AVR_TOOLS_PATH)/avr-gcc ;
AVR_OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy ;
AVRDUDE = $(AVR_TOOLS_PATH)/avrdude ;
DEFINES = F_CPU=$(F_CPU)L ARDUINO=$(ARDUINO_VERSION) VERSION_H ;
CTUNING = -ffunction-sections -fdata-sections ;
CXXTUNING = -fno-exceptions -fno-strict-aliasing ;
CFLAGS = -Os -Wall -Wextra -mmcu=$(MCU) $(CTUNING) ;
CXXFLAGS = $(CFLAGS) $(CXXTUNING) ;
LDFLAGS = -Os -lm -Wl,--gc-sections -mmcu=atmega328p ;
# Search everywhere for headers
HDRS = $(PROJECT_DIR) $(ARDUINO_AVR) $(ARDUINO_CORE) [ GLOB $(ARDUINO_LIB) $(SKETCH_LIB) : [^.]* ] ;
# Grab everything from the core directory
CORE_MODULES = [ GLOB $(ARDUINO_CORE) : *.c *.cpp ] ;
# Grab everything from libraries. To avoid this "grab everything" behaviour, you
# can specify specific modules to pick up in PROJECT_MODULES
LIB_MODULES = [ GLOB $(ARDUINO_LIB)/$(PROJECT_LIBS) $(SKETCH_LIB)/$(PROJECT_LIBS) : *.cpp ] ;
# In addition to explicitly-specified program modules, pick up anything from the current
# dir.
PROJECT_MODULES += [ GLOB $(PROJECT_DIR) : *.c *.cpp *.pde ] ;
# Shortcut for the out files
OUT = $(OUT_DIR)/$(PROJECT_NAME) ;
# AvrDude setup
AVRDUDE_FLAGS = -V -F -D -C $(AVRDUDECONFIG_PATH)/avrdude.conf -p $(MCU) -c $(AVRDUDE_PROTOCOL) -b $(UPLOAD_RATE) ;
rule GitVersion
{
Always $(<) ;
Depends all : $(<) ;
}
actions GitVersion
{
echo "const char program_version[] = \"\\" > $(<)
git log -1 --pretty=format:%h >> $(<)
echo "\";" >> $(<)
}
GitVersion version.h ;
rule AvrCc
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
CCHDRS on $(<) = [ on $(<) FIncludes $(HDRS) ] ;
CCDEFS on $(<) = [ on $(<) FDefines $(DEFINES) ] ;
}
actions AvrCc
{
$(AVR_CC) -c -o $(<) $(CCHDRS) $(CCDEFS) $(CFLAGS) $(>)
}
rule AvrC++
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
CCHDRS on $(<) = [ on $(<) FIncludes $(HDRS) ] ;
CCDEFS on $(<) = [ on $(<) FDefines $(DEFINES) ] ;
}
actions AvrC++
{
$(AVR_CXX) -c -o $(<) $(CCHDRS) $(CCDEFS) $(CXXFLAGS) $(>)
}
rule Pde
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
}
actions Pde
{
echo "#include <WProgram.h>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule AvrPde
{
local _CPP = $(OUT_DIR)/$(_I:B).cpp ;
Pde $(_CPP) : $(>) ;
AvrC++ $(<) : $(_CPP) ;
}
rule AvrObject
{
switch $(>:S)
{
case .c : AvrCc $(<) : $(>) ;
case .cpp : AvrC++ $(<) : $(>) ;
case .pde : AvrPde $(<) : $(>) ;
}
}
rule AvrObjects
{
for _I in $(<)
{
AvrObject $(OUT_DIR)/$(_I:B).o : $(_I) ;
}
}
rule AvrMainFromObjects
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
MkDir $(<:D) ;
Depends all : $(<) ;
Clean clean : $(<) ;
}
actions AvrMainFromObjects
{
$(AVR_LD) $(LDFLAGS) -o $(<) $(>)
}
rule AvrMain
{
AvrMainFromObjects $(<) : $(OUT_DIR)/$(>:B).o ;
AvrObjects $(>) ;
}
rule AvrHex
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions AvrHex
{
$(AVR_OBJCOPY) -O ihex -R .eeprom $(>) $(<)
}
rule AvrUpload
{
Depends $(1) : $(2) ;
Depends $(2) : $(3) ;
NotFile $(1) ;
Always $(1) ;
Always $(2) ;
AvrUploadAction $(2) : $(3) ;
}
actions AvrUploadAction
{
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(<) $(AVRDUDE_WRITE_FLASH) -U flash:w:$(>):i
}
AvrMain $(OUT).elf : $(CORE_MODULES) $(LIB_MODULES) $(PROJECT_MODULES) ;
AvrHex $(OUT).hex : $(OUT).elf ;
AvrUpload p6 : /dev/tty.usbserial-A600eHIs : $(OUT).hex ;
AvrUpload p4 : /dev/tty.usbserial-A40081RP : $(OUT).hex ;
AvrUpload p9 : /dev/tty.usbserial-A9007LmI : $(OUT).hex ;

View File

@@ -0,0 +1,288 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example RF Radio Ping Pair which Sleeps between Sends
*
* This is an example of how to use the RF24 class to create a battery-
* efficient system. It is just like the pingpair.pde example, but the
* ping node powers down the radio and sleeps the MCU after every
* ping/pong cycle.
*
* As with the pingpair.pde example, write this sketch to two different nodes,
* connect the role_pin to ground on one. The ping node sends the current
* time to the pong node, which responds by sending the value back. The ping
* node can then see how long the whole cycle took.
*/
#include <SPI.h>
#include <avr/sleep.h>
#include <avr/power.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver
// Leave open to be the 'ping' transmitter
const int role_pin = 7;
//
// Topology
//
// Radio pipe addresses for the 2 nodes to communicate.
const uint64_t pipes[2] = { 0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL };
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the role_pin
//
// The various roles supported by this sketch
typedef enum { role_ping_out = 1, role_pong_back } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
// The role of the current running sketch
role_e role;
//
// Sleep declarations
//
typedef enum { wdt_16ms = 0, wdt_32ms, wdt_64ms, wdt_128ms, wdt_250ms, wdt_500ms, wdt_1s, wdt_2s, wdt_4s, wdt_8s } wdt_prescalar_e;
void setup_watchdog(uint8_t prescalar);
void do_sleep(void);
const short sleep_cycles_per_transmission = 4;
volatile short sleep_cycles_remaining = sleep_cycles_per_transmission;
//
// Normal operation
//
void setup(void)
{
//
// Role
//
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role
if ( digitalRead(role_pin) )
role = role_ping_out;
else
role = role_pong_back;
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/pingpair_sleepy/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
//
// Prepare sleep parameters
//
// Only the ping out role sleeps. Wake up every 4s to send a ping
if ( role == role_ping_out )
setup_watchdog(wdt_1s);
//
// Setup and configure rf radio
//
radio.begin();
//
// Open pipes to other nodes for communication
//
// This simple sketch opens two pipes for these two nodes to communicate
// back and forth.
// Open 'our' pipe for writing
// Open the 'other' pipe for reading, in position #1 (we can have up to 5 pipes open for reading)
if ( role == role_ping_out )
{
radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1,pipes[1]);
}
else
{
radio.openWritingPipe(pipes[1]);
radio.openReadingPipe(1,pipes[0]);
}
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
}
void loop(void)
{
//
// Ping out role. Repeatedly send the current time
//
if (role == role_ping_out)
{
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
radio.write( &time, sizeof(unsigned long) );
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout (250ms)
unsigned long started_waiting_at = millis();
bool timeout = false;
while ( ! radio.available() && ! timeout )
if (millis() - started_waiting_at > 250 )
timeout = true;
// Describe the results
if ( timeout )
{
printf("Failed, response timed out.\n\r");
}
else
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
}
//
// Shut down the system
//
// Experiment with some delay here to see if it has an effect
delay(500);
// Power down the radio. Note that the radio will get powered back up
// on the next write() call.
radio.powerDown();
// Sleep the MCU. The watchdog timer will awaken in a short while, and
// continue execution here.
while( sleep_cycles_remaining )
do_sleep();
sleep_cycles_remaining = sleep_cycles_per_transmission;
}
//
// Pong back role. Receive each packet, dump it out, and send it back
//
// This is untouched from the pingpair example.
//
if ( role == role_pong_back )
{
// if there is data ready
if ( radio.available() )
{
// Dump the payloads until we've gotten everything
unsigned long got_time;
bool done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time, sizeof(unsigned long) );
// Spew it. Include our time, because the ping_out millis counter is unreliable
// due to it sleeping
printf("Got payload %lu @ %lu...",got_time,millis());
}
// First, stop listening so we can talk
radio.stopListening();
// Send the final one back.
radio.write( &got_time, sizeof(unsigned long) );
printf("Sent response.\n\r");
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
}
//
// Sleep helpers
//
// 0=16ms, 1=32ms,2=64ms,3=125ms,4=250ms,5=500ms
// 6=1 sec,7=2 sec, 8=4 sec, 9= 8sec
void setup_watchdog(uint8_t prescalar)
{
prescalar = min(9,prescalar);
uint8_t wdtcsr = prescalar & 7;
if ( prescalar & 8 )
wdtcsr |= _BV(WDP3);
MCUSR &= ~_BV(WDRF);
WDTCSR = _BV(WDCE) | _BV(WDE);
WDTCSR = _BV(WDCE) | wdtcsr | _BV(WDIE);
}
ISR(WDT_vect)
{
--sleep_cycles_remaining;
}
void do_sleep(void)
{
set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here
sleep_enable();
sleep_mode(); // System sleeps here
sleep_disable(); // System continues execution here when watchdog timed out
}
// vim:ai:cin:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,37 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#ifdef ARDUINO
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#else
#error This example is only for use on Arduino.
#endif // ARDUINO
#endif // __PRINTF_H__

View File

@@ -0,0 +1,210 @@
# (1) Project Information
PROJECT_LIBS = SPI RF24 ;
# (2) Board Information
UPLOAD_PROTOCOL ?= stk500v1 ;
UPLOAD_SPEED ?= 57600 ;
MCU ?= atmega328p ;
F_CPU ?= 16000000 ;
CORE ?= arduino ;
VARIANT ?= standard ;
ARDUINO_VERSION ?= 100 ;
# (3) USB Ports
PORTS = p4 p6 p9 u0 u1 u2 ;
PORT_p6 = /dev/tty.usbserial-A600eHIs ;
PORT_p4 = /dev/tty.usbserial-A40081RP ;
PORT_p9 = /dev/tty.usbserial-A9007LmI ;
PORT_u0 = /dev/ttyUSB0 ;
PORT_u1 = /dev/ttyUSB1 ;
PORT_u2 = /dev/ttyUSB2 ;
# (4) Location of AVR tools
#
# This configuration assumes using avr-tools that were obtained separate from the Arduino
# distribution.
if $(OS) = MACOSX
{
AVR_BIN = /usr/local/avrtools/bin ;
AVR_ETC = /usr/local/avrtools/etc ;
AVR_INCLUDE = /usr/local/avrtools/include ;
}
else
{
AVR_BIN = /usr/bin ;
AVR_INCLUDE = /usr/lib/avr/include ;
AVR_ETC = /etc ;
}
# (5) Directories where Arduino core and libraries are located
ARDUINO_DIR ?= /opt/Arduino ;
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/$(CORE) $(ARDUINO_DIR)/hardware/arduino/variants/$(VARIANT) ;
ARDUINO_LIB = $(ARDUINO_DIR)/libraries ;
SKETCH_LIB = $(HOME)/Source/Arduino/libraries ;
#
# --------------------------------------------------
# Below this line usually never needs to be modified
#
# Tool locations
CC = $(AVR_BIN)/avr-gcc ;
C++ = $(AVR_BIN)/avr-g++ ;
LINK = $(AVR_BIN)/avr-gcc ;
OBJCOPY = $(AVR_BIN)/avr-objcopy ;
AVRDUDE = $(AVR_BIN)/avrdude ;
# Flags
DEFINES += F_CPU=$(F_CPU)L ARDUINO=$(ARDUINO_VERSION) VERSION_H ;
OPTIM = -Os ;
CCFLAGS = -Wall -Wextra -mmcu=$(MCU) -ffunction-sections -fdata-sections ;
C++FLAGS = $(CCFLAGS) -fno-exceptions -fno-strict-aliasing ;
LINKFLAGS = $(OPTIM) -lm -Wl,--gc-sections -mmcu=$(MCU) ;
AVRDUDEFLAGS = -V -F -D -C $(AVR_ETC)/avrdude.conf -p $(MCU) -c $(UPLOAD_PROTOCOL) -b $(UPLOAD_SPEED) ;
# Search everywhere for headers
HDRS = $(PWD) $(AVR_INCLUDE) $(ARDUINO_CORE) $(ARDUINO_LIB)/$(PROJECT_LIBS) $(ARDUINO_LIB)/$(PROJECT_LIBS)/utility $(SKETCH_LIB)/$(PROJECT_LIBS) ;
# Output locations
LOCATE_TARGET = $(F_CPU) ;
LOCATE_SOURCE = $(F_CPU) ;
#
# Custom rules
#
rule GitVersion
{
Always $(<) ;
Depends all : $(<) ;
}
actions GitVersion
{
echo "const char program_version[] = \"\\" > $(<)
git log -1 --pretty=format:%h >> $(<)
echo "\";" >> $(<)
}
GitVersion version.h ;
rule Pde
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_SOURCE) ;
Clean clean : $(<) ;
}
if ( $(ARDUINO_VERSION) < 100 )
{
ARDUINO_H = WProgram.h ;
}
else
{
ARDUINO_H = Arduino.h ;
}
actions Pde
{
echo "#include <$(ARDUINO_H)>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule C++Pde
{
local _CPP = $(>:B).cpp ;
Pde $(_CPP) : $(>) ;
C++ $(<) : $(_CPP) ;
}
rule UserObject
{
switch $(>:S)
{
case .ino : C++Pde $(<) : $(>) ;
case .pde : C++Pde $(<) : $(>) ;
}
}
rule Objects
{
local _i ;
for _i in [ FGristFiles $(<) ]
{
local _b = $(_i:B)$(SUFOBJ) ;
local _o = $(_b:G=$(SOURCE_GRIST:E)) ;
Object $(_o) : $(_i) ;
Depends obj : $(_o) ;
}
}
rule Main
{
MainFromObjects $(<) : $(>:B)$(SUFOBJ) ;
Objects $(>) ;
}
rule Hex
{
Depends $(<) : $(>) ;
MakeLocate $(<) : $(LOCATE_TARGET) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions Hex
{
$(OBJCOPY) -O ihex -R .eeprom $(>) $(<)
}
rule Upload
{
Depends $(1) : $(2) ;
Depends $(2) : $(3) ;
NotFile $(1) ;
Always $(1) ;
Always $(2) ;
UploadAction $(2) : $(3) ;
}
actions UploadAction
{
$(AVRDUDE) $(AVRDUDEFLAGS) -P $(<) $(AVRDUDE_WRITE_FLASH) -U flash:w:$(>):i
}
#
# Targets
#
# Grab everything from the core directory
CORE_MODULES = [ GLOB $(ARDUINO_CORE) : *.c *.cpp ] ;
# Grab everything from libraries. To avoid this "grab everything" behaviour, you
# can specify specific modules to pick up in PROJECT_MODULES
LIB_MODULES = [ GLOB $(ARDUINO_LIB)/$(PROJECT_LIBS) $(ARDUINO_LIB)/$(PROJECT_LIBS)/utility $(SKETCH_LIB)/$(PROJECT_LIBS) : *.cpp *.c ] ;
# Grab everything from the current dir
PROJECT_MODULES += [ GLOB $(PWD) : *.c *.cpp *.pde *.ino ] ;
# Main output executable
MAIN = $(PWD:B).elf ;
Main $(MAIN) : $(CORE_MODULES) $(LIB_MODULES) $(PROJECT_MODULES) ;
Hex $(MAIN:B).hex : $(MAIN) ;
# Upload targets
for _p in $(PORTS)
{
Upload $(_p) : $(PORT_$(_p)) : $(MAIN:B).hex ;
}

View File

@@ -0,0 +1,31 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#endif // __PRINTF_H__

View File

@@ -0,0 +1,124 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Channel scanner
*
* Example to detect interference on the various channels available.
* This is a good diagnostic tool to check whether you're picking a
* good channel for your application.
*
* Inspired by cpixip.
* See http://arduino.cc/forum/index.php/topic,54795.0.html
*/
#include <SPI.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
//
// Channel info
//
const uint8_t num_channels = 128;
uint8_t values[num_channels];
//
// Setup
//
void setup(void)
{
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/scanner/\n\r");
//
// Setup and configure rf radio
//
radio.begin();
radio.setAutoAck(false);
// Get into standby mode
radio.startListening();
radio.stopListening();
// Print out header, high then low digit
int i = 0;
while ( i < num_channels )
{
printf("%x",i>>4);
++i;
}
printf("\n\r");
i = 0;
while ( i < num_channels )
{
printf("%x",i&0xf);
++i;
}
printf("\n\r");
}
//
// Loop
//
const int num_reps = 100;
void loop(void)
{
// Clear measurement values
memset(values,0,sizeof(values));
// Scan all channels num_reps times
int rep_counter = num_reps;
while (rep_counter--)
{
int i = num_channels;
while (i--)
{
// Select this channel
radio.setChannel(i);
// Listen for a little
radio.startListening();
delayMicroseconds(128);
radio.stopListening();
// Did we get a carrier?
if ( radio.testCarrier() )
++values[i];
}
}
// Print out channel measurements, clamped to a single hex digit
int i = 0;
while ( i < num_channels )
{
printf("%x",min(0xf,values[i]&0xf));
++i;
}
printf("\n\r");
}
// vim:ai:cin:sts=2 sw=2 ft=cpp

View File

@@ -0,0 +1,206 @@
PROJECT_NAME = $(PWD:B) ;
PROJECT_DIR = . ;
PROJECT_LIBS = EEPROM SPI RF24 ;
OUT_DIR = ojam ;
F_CPU = 16000000 ;
MCU = atmega328p ;
PORTS = /dev/tty.usbserial-A600eHIs /dev/tty.usbserial-A40081RP /dev/tty.usbserial-A9007LmI ;
UPLOAD_RATE = 57600 ;
AVRDUDE_PROTOCOL = stk500v1 ;
COM = 33 ;
# Host-specific overrides for locations
if $(OS) = MACOSX
{
ARDUINO_VERSION = 22 ;
OLD_DIR = /opt/arduino-0021 ;
AVR_TOOLS_PATH = $(OLD_DIR)/hardware/tools/avr/bin ;
AVRDUDECONFIG_PATH = $(OLD_DIR)/hardware/tools/avr/etc ;
ARDUINO_DIR = /opt/Arduino ;
ARDUINO_AVR = /usr/lib/avr/include ;
}
# Where is everything?
ARDUINO_VERSION ?= 22 ;
AVR_TOOLS_PATH ?= /usr/bin ;
ARDUINO_DIR ?= /opt/arduino-00$(ARDUINO_VERSION) ;
ARDUINO_AVR ?= $(ARDUINO_DIR)/hardware/tools/avr/avr/include/avr ;
AVRDUDECONFIG_PATH ?= $(ARDUINO_DIR)/hardware/tools ;
ARDUINO_CORE = $(ARDUINO_DIR)/hardware/arduino/cores/arduino ;
ARDUINO_LIB = $(ARDUINO_DIR)/libraries ;
SKETCH_LIB = $(HOME)/Source/Arduino/libraries ;
AVR_CC = $(AVR_TOOLS_PATH)/avr-gcc ;
AVR_CXX = $(AVR_TOOLS_PATH)/avr-g++ ;
AVR_LD = $(AVR_TOOLS_PATH)/avr-gcc ;
AVR_OBJCOPY = $(AVR_TOOLS_PATH)/avr-objcopy ;
AVRDUDE = $(AVR_TOOLS_PATH)/avrdude ;
DEFINES = F_CPU=$(F_CPU)L ARDUINO=$(ARDUINO_VERSION) VERSION_H ;
CTUNING = -ffunction-sections -fdata-sections ;
CXXTUNING = -fno-exceptions -fno-strict-aliasing ;
CFLAGS = -Os -Wall -Wextra -mmcu=$(MCU) $(CTUNING) ;
CXXFLAGS = $(CFLAGS) $(CXXTUNING) ;
LDFLAGS = -Os -lm -Wl,--gc-sections -mmcu=atmega328p ;
# Search everywhere for headers
HDRS = $(PROJECT_DIR) $(ARDUINO_AVR) $(ARDUINO_CORE) [ GLOB $(ARDUINO_LIB) $(SKETCH_LIB) : [^.]* ] ;
# Grab everything from the core directory
CORE_MODULES = [ GLOB $(ARDUINO_CORE) : *.c *.cpp ] ;
# Grab everything from libraries. To avoid this "grab everything" behaviour, you
# can specify specific modules to pick up in PROJECT_MODULES
LIB_MODULES = [ GLOB $(ARDUINO_LIB)/$(PROJECT_LIBS) $(SKETCH_LIB)/$(PROJECT_LIBS) : *.cpp ] ;
# In addition to explicitly-specified program modules, pick up anything from the current
# dir.
PROJECT_MODULES += [ GLOB $(PROJECT_DIR) : *.c *.cpp *.pde ] ;
# Shortcut for the out files
OUT = $(OUT_DIR)/$(PROJECT_NAME) ;
# AvrDude setup
AVRDUDE_FLAGS = -V -F -D -C $(AVRDUDECONFIG_PATH)/avrdude.conf -p $(MCU) -c $(AVRDUDE_PROTOCOL) -b $(UPLOAD_RATE) ;
rule GitVersion
{
Always $(<) ;
Depends all : $(<) ;
}
actions GitVersion
{
echo "const char program_version[] = \"\\" > $(<)
git log -1 --pretty=format:%h >> $(<)
echo "\";" >> $(<)
}
GitVersion version.h ;
rule AvrCc
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
CCHDRS on $(<) = [ on $(<) FIncludes $(HDRS) ] ;
CCDEFS on $(<) = [ on $(<) FDefines $(DEFINES) ] ;
}
actions AvrCc
{
$(AVR_CC) -c -o $(<) $(CCHDRS) $(CCDEFS) $(CFLAGS) $(>)
}
rule AvrC++
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
CCHDRS on $(<) = [ on $(<) FIncludes $(HDRS) ] ;
CCDEFS on $(<) = [ on $(<) FDefines $(DEFINES) ] ;
}
actions AvrC++
{
$(AVR_CXX) -c -o $(<) $(CCHDRS) $(CCDEFS) $(CXXFLAGS) $(>)
}
rule Pde
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Clean clean : $(<) ;
}
actions Pde
{
echo "#include <WProgram.h>" > $(<)
echo "#line 1 \"$(>)\"" >> $(<)
cat $(>) >> $(<)
}
rule AvrPde
{
local _CPP = $(OUT_DIR)/$(_I:B).cpp ;
Pde $(_CPP) : $(>) ;
AvrC++ $(<) : $(_CPP) ;
}
rule AvrObject
{
switch $(>:S)
{
case .c : AvrCc $(<) : $(>) ;
case .cpp : AvrC++ $(<) : $(>) ;
case .pde : AvrPde $(<) : $(>) ;
}
}
rule AvrObjects
{
for _I in $(<)
{
AvrObject $(OUT_DIR)/$(_I:B).o : $(_I) ;
}
}
rule AvrMainFromObjects
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
MkDir $(<:D) ;
Depends all : $(<) ;
Clean clean : $(<) ;
}
actions AvrMainFromObjects
{
$(AVR_LD) $(LDFLAGS) -o $(<) $(>)
}
rule AvrMain
{
AvrMainFromObjects $(<) : $(OUT_DIR)/$(>:B).o ;
AvrObjects $(>) ;
}
rule AvrHex
{
Depends $(<) : $(>) ;
Depends $(<) : $(<:D) ;
Depends hex : $(<) ;
Clean clean : $(<) ;
}
actions AvrHex
{
$(AVR_OBJCOPY) -O ihex -R .eeprom $(>) $(<)
}
rule AvrUpload
{
Depends $(1) : $(2) ;
Depends $(2) : $(3) ;
NotFile $(1) ;
Always $(1) ;
Always $(2) ;
AvrUploadAction $(2) : $(3) ;
}
actions AvrUploadAction
{
$(AVRDUDE) $(AVRDUDE_FLAGS) -P $(<) $(AVRDUDE_WRITE_FLASH) -U flash:w:$(>):i
}
AvrMain $(OUT).elf : $(CORE_MODULES) $(LIB_MODULES) $(PROJECT_MODULES) ;
AvrHex $(OUT).hex : $(OUT).elf ;
AvrUpload p6 : /dev/tty.usbserial-A600eHIs : $(OUT).hex ;
AvrUpload p4 : /dev/tty.usbserial-A40081RP : $(OUT).hex ;
AvrUpload p9 : /dev/tty.usbserial-A9007LmI : $(OUT).hex ;

View File

@@ -0,0 +1,37 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* @file printf.h
*
* Setup necessary to direct stdout to the Arduino Serial library, which
* enables 'printf'
*/
#ifndef __PRINTF_H__
#define __PRINTF_H__
#ifdef ARDUINO
int serial_putc( char c, FILE * )
{
Serial.write( c );
return c;
}
void printf_begin(void)
{
fdevopen( &serial_putc, 0 );
}
#else
#error This example is only for use on Arduino.
#endif // ARDUINO
#endif // __PRINTF_H__

View File

@@ -0,0 +1,293 @@
/*
Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/**
* Example RF Radio Ping Star Group
*
* This sketch is a more complex example of using the RF24 library for Arduino.
* Deploy this on up to six nodes. Set one as the 'pong receiver' by tying the
* role_pin low, and the others will be 'ping transmit' units. The ping units
* unit will send out the value of millis() once a second. The pong unit will
* respond back with a copy of the value. Each ping unit can get that response
* back, and determine how long the whole cycle took.
*
* This example requires a bit more complexity to determine which unit is which.
* The pong receiver is identified by having its role_pin tied to ground.
* The ping senders are further differentiated by a byte in eeprom.
*/
#include <SPI.h>
#include <EEPROM.h>
#include "nRF24L01.h"
#include "RF24.h"
#include "printf.h"
//
// Hardware configuration
//
// Set up nRF24L01 radio on SPI bus plus pins 9 & 10
RF24 radio(9,10);
// sets the role of this unit in hardware. Connect to GND to be the 'pong' receiver
// Leave open to be the 'pong' receiver.
const int role_pin = 7;
//
// Topology
//
// Radio pipe addresses for the nodes to communicate. Only ping nodes need
// dedicated pipes in this topology. Each ping node has a talking pipe
// that it will ping into, and a listening pipe that it will listen for
// the pong. The pong node listens on all the ping node talking pipes
// and sends the pong back on the sending node's specific listening pipe.
const uint64_t talking_pipes[5] = { 0xF0F0F0F0D2LL, 0xF0F0F0F0C3LL, 0xF0F0F0F0B4LL, 0xF0F0F0F0A5LL, 0xF0F0F0F096LL };
const uint64_t listening_pipes[5] = { 0x3A3A3A3AD2LL, 0x3A3A3A3AC3LL, 0x3A3A3A3AB4LL, 0x3A3A3A3AA5LL, 0x3A3A3A3A96LL };
//
// Role management
//
// Set up role. This sketch uses the same software for all the nodes
// in this system. Doing so greatly simplifies testing. The hardware itself specifies
// which node it is.
//
// This is done through the role_pin
//
// The various roles supported by this sketch
typedef enum { role_invalid = 0, role_ping_out, role_pong_back } role_e;
// The debug-friendly names of those roles
const char* role_friendly_name[] = { "invalid", "Ping out", "Pong back"};
// The role of the current running sketch
role_e role;
//
// Address management
//
// Where in EEPROM is the address stored?
const uint8_t address_at_eeprom_location = 0;
// What is our address (SRAM cache of the address from EEPROM)
// Note that zero is an INVALID address. The pong back unit takes address
// 1, and the rest are 2-6
uint8_t node_address;
void setup(void)
{
//
// Role
//
// set up the role pin
pinMode(role_pin, INPUT);
digitalWrite(role_pin,HIGH);
delay(20); // Just to get a solid reading on the role pin
// read the address pin, establish our role
if ( digitalRead(role_pin) )
role = role_ping_out;
else
role = role_pong_back;
//
// Address
//
if ( role == role_pong_back )
node_address = 1;
else
{
// Read the address from EEPROM
uint8_t reading = EEPROM.read(address_at_eeprom_location);
// If it is in a valid range for node addresses, it is our
// address.
if ( reading >= 2 && reading <= 6 )
node_address = reading;
// Otherwise, it is invalid, so set our address AND ROLE to 'invalid'
else
{
node_address = 0;
role = role_invalid;
}
}
//
// Print preamble
//
Serial.begin(57600);
printf_begin();
printf("\n\rRF24/examples/starping/\n\r");
printf("ROLE: %s\n\r",role_friendly_name[role]);
printf("ADDRESS: %i\n\r",node_address);
//
// Setup and configure rf radio
//
radio.begin();
//
// Open pipes to other nodes for communication
//
// The pong node listens on all the ping node talking pipes
// and sends the pong back on the sending node's specific listening pipe.
if ( role == role_pong_back )
{
radio.openReadingPipe(1,talking_pipes[0]);
radio.openReadingPipe(2,talking_pipes[1]);
radio.openReadingPipe(3,talking_pipes[2]);
radio.openReadingPipe(4,talking_pipes[3]);
radio.openReadingPipe(5,talking_pipes[4]);
}
// Each ping node has a talking pipe that it will ping into, and a listening
// pipe that it will listen for the pong.
if ( role == role_ping_out )
{
// Write on our talking pipe
radio.openWritingPipe(talking_pipes[node_address-2]);
// Listen on our listening pipe
radio.openReadingPipe(1,listening_pipes[node_address-2]);
}
//
// Start listening
//
radio.startListening();
//
// Dump the configuration of the rf unit for debugging
//
radio.printDetails();
//
// Prompt the user to assign a node address if we don't have one
//
if ( role == role_invalid )
{
printf("\n\r*** NO NODE ADDRESS ASSIGNED *** Send 1 through 6 to assign an address\n\r");
}
}
void loop(void)
{
//
// Ping out role. Repeatedly send the current time
//
if (role == role_ping_out)
{
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
unsigned long time = millis();
printf("Now sending %lu...",time);
radio.write( &time, sizeof(unsigned long) );
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout (250ms)
unsigned long started_waiting_at = millis();
bool timeout = false;
while ( ! radio.available() && ! timeout )
if (millis() - started_waiting_at > 250 )
timeout = true;
// Describe the results
if ( timeout )
{
printf("Failed, response timed out.\n\r");
}
else
{
// Grab the response, compare, and send to debugging spew
unsigned long got_time;
radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got response %lu, round-trip delay: %lu\n\r",got_time,millis()-got_time);
}
// Try again 1s later
delay(1000);
}
//
// Pong back role. Receive each packet, dump it out, and send it back
//
if ( role == role_pong_back )
{
// if there is data ready
uint8_t pipe_num;
if ( radio.available(&pipe_num) )
{
// Dump the payloads until we've gotten everything
unsigned long got_time;
bool done = false;
while (!done)
{
// Fetch the payload, and see if this was the last one.
done = radio.read( &got_time, sizeof(unsigned long) );
// Spew it
printf("Got payload %lu from node %i...",got_time,pipe_num+1);
}
// First, stop listening so we can talk
radio.stopListening();
// Open the correct pipe for writing
radio.openWritingPipe(listening_pipes[pipe_num-1]);
// Retain the low 2 bytes to identify the pipe for the spew
uint16_t pipe_id = listening_pipes[pipe_num-1] & 0xffff;
// Send the final one back.
radio.write( &got_time, sizeof(unsigned long) );
printf("Sent response to %04x.\n\r",pipe_id);
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
//
// Listen for serial input, which is how we set the address
//
if (Serial.available())
{
// If the character on serial input is in a valid range...
char c = Serial.read();
if ( c >= '1' && c <= '6' )
{
// It is our address
EEPROM.write(address_at_eeprom_location,c-'0');
// And we are done right now (no easy way to soft reset)
printf("\n\rManually reset address to: %c\n\rPress RESET to continue!",c);
while(1) ;
}
}
}
// vim:ai:ci sts=2 sw=2 ft=cpp